Synthesis of Bis{-Tetrakis(4--alkylpyridiniumyl)porphyrinato}cerium and Its Redox Switching Behavior.

Molecules

Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.

Published: February 2021

A novel double-decker porphyrin complex, bis{-tetrakis(4--alkylpyridiniumyl)porphyrinato}cerium, was prepared. Electrochemical measurements revealed that this complex exhibited reversible redox waves corresponding to a 1e redox reaction of the cerium center. Treating the complex alternately with an oxidant and a reductant resulted in the reversible redox switching between the oxidized and reduced states in an organic solvent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913613PMC
http://dx.doi.org/10.3390/molecules26040790DOI Listing

Publication Analysis

Top Keywords

redox switching
8
reversible redox
8
synthesis bis{-tetrakis4--alkylpyridiniumylporphyrinato}cerium
4
redox
4
bis{-tetrakis4--alkylpyridiniumylporphyrinato}cerium redox
4
switching behavior
4
behavior novel
4
novel double-decker
4
double-decker porphyrin
4
porphyrin complex
4

Similar Publications

Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.

View Article and Find Full Text PDF

Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics.

Plant J

January 2025

Systems Biotechnology Group, Department Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany.

Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process.

View Article and Find Full Text PDF

The polymerase gamma (POLG) gene mutation is associated with mitochondria and metabolism disorders, resulting in heterogeneous responses to immunological activation and posing challenges for mitochondrial disease therapy. Optical metabolic imaging captures the autofluorescent signal of two coenzymes, NADH and FAD, and offers a label-free approach to detect cellular metabolic phenotypes, track mitochondria morphology, and quantify metabolic heterogeneity. In this study, fluorescence lifetime imaging (FLIM) of NAD(P)H and FAD revealed that POLG mutator macrophages exhibit a decreased NAD(P)H lifetime, and optical redox ratio compared to the wild-type macrophages, indicating an increased dependence on glycolysis.

View Article and Find Full Text PDF

Novel coumarin-triphenyliminophosphorane (TPIPP) fluorophores, synthesized via a nonhydrolytic Staudinger reaction, exhibit remarkable redox-responsive optical properties. Upon chemical and electrochemical oxidation, these compounds display a hypsochromic shift in absorption from 430 to 350 nm, accompanied by up to 11-fold fluorescence enhancement under 405 nm excitation. The fluorescence switching occurs at an electrochemical oxidation potential of approximately +2.

View Article and Find Full Text PDF

Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!