Bioactive Icariin/β-CD-IC/Bacterial Cellulose with Enhanced Biomedical Potential.

Nanomaterials (Basel)

Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.

Published: February 2021

A "super" bioactive antibacterial hydrogel, Icariin-β-CD-inclusion complex/Bacterial cellulose and an equally capable counterpart Icariin-Bacterial cellulose (ICBC) were successfully produced with excellent antioxidant properties. The highly porous hydrogels demonstrated very high fluid/liquid absorption capability and were functionally active as Fourier Transform Infrared Spectrometer (FTIR) test confirmed the existence of abundant hydroxyls (-OH stretching), carboxylic acids (-CH/C-O stretching), Alkyne/nitrile (C≡C/C≡N stretching with triple bonds) and phenol (C-H/N-O symmetric stretching) functional groups. Scanning electron microscope (SEM) and X-ray diffraction (XRD) tests confirmed a successful β-CD-inclusion complexation with Icariin with a great potential for sustained and controlled drug release. In vitro drug release test results indicated a systemic and controlled release of the drug (Icariin) from the internal cavities of the β-CD inclusion complex incorporated inside the BC matrix with high Icariin (drug) release rates. Impressive inactivation rates against Gram-negative bacteria ATCC 8099 and gram-positive bacteria ATCC 6538; >99.19% and >98.89% respectively were recorded, as the materials proved to be non-toxic on L929 cells in the in vitro cytotoxicity test results. The materials with promising versatile multipurpose administration of Icariin for wound dressing (as wound dressers), can also be executed as implants for tissue regeneration, as well as face-mask for cosmetic purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913306PMC
http://dx.doi.org/10.3390/nano11020387DOI Listing

Publication Analysis

Top Keywords

drug release
12
bacteria atcc
8
bioactive icariin/β-cd-ic/bacterial
4
icariin/β-cd-ic/bacterial cellulose
4
cellulose enhanced
4
enhanced biomedical
4
biomedical potential
4
potential "super"
4
"super" bioactive
4
bioactive antibacterial
4

Similar Publications

The infiltrative and diffuse nature of gliomas makes complete resection unfeasible. Unfortunately, regions of brain parenchyma with residual, infiltrative tumor are protected by the blood-brain barrier (BBB), making systemic chemotherapies, small-molecule inhibitors, and immunotherapies of limited efficacy. Low-frequency focused ultrasound (FUS) in combination with intravascular microbubbles can be used to disrupt the BBB transiently and selectively within the tumor and peritumoral region.

View Article and Find Full Text PDF

Diabetic foot, leg ulcers and decubitus ulcers affect millions of individuals worldwide leading to poor quality of life, pain and in several cases to limb amputations. Despite the global dimension of this clinical problem, limited progress has been made in developing more efficacious wound dressings, the design of which currently focusses on wound protection and control of its exudate volume. The present in vitro study systematically analysed seven types of clinically-available wound dressings made of different biomaterial composition and engineering.

View Article and Find Full Text PDF

Purpose: To systematically evaluate the efficacy and safety of creatine phosphate sodium in the treatment of viral myocarditis, and to provide guidance for its clinical treatment.

Methods: We conducted a search of The Cochrane Library, PubMed, EMbase, and Web of Science databases to retrieve randomized controlled trials (RCTs) on the use of creatine phosphate sodium (CPS) in the treatment of viral myocarditis. The search was conducted up to April 2024.

View Article and Find Full Text PDF

TLR4 Inhibition Attenuated LPS-Induced Proinflammatory Signaling and Cytokine Release in Mouse Hearts and Cardiomyocytes.

Immun Inflamm Dis

January 2025

Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

Background: Sepsis is associated with myocardial injury and early mortality. The innate immune receptor Toll-like receptor 4 (TLR4) can recognize pathogen-associated-molecular-patterns (PAMPs) and damage-associated molecular patterns (DAMPs); the latter are released during tissue injury. We hypothesized that TLR4 inhibition reduces proinflammatory signaling and cytokine release in: (1) LPS or Escherichia coli-treated isolated mouse heart; (2) LPS-treated mouse primary adult cardiomyocytes; and (3) the isolated heart during ischemia-reperfusion.

View Article and Find Full Text PDF

A20 as a Potential Therapeutic Target for COVID-19.

Immun Inflamm Dis

January 2025

State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Background: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major concern due to its astonishing prevalence and high fatality rate, especially among elderly people. Patients suffering from COVID-19 may exhibit immunosuppression in the initial stage of infection, while a cytokine storm can occur when the disease progresses to a severe stage. This inopportune immune rhythm not only makes patients more susceptible to the virus but also leads to numerous complications resulting from the excessive production of inflammatory factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!