EZ-SEP: Extended Z-SEP Routing Protocol with Hierarchical Clustering Approach for Wireless Heterogeneous Sensor Network.

Sensors (Basel)

Department of Communication Technology and Network, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.

Published: February 2021

Wireless sensor networks (WSN) are networks of thousands of nodes installed in a defined physical environment to sense and monitor its state condition. The viability of such a network is directly dependent and limited by the power of batteries supplying the nodes of these networks, which represents a disadvantage of such a network. To improve and extend the life of WSNs, scientists around the world regularly develop various routing protocols that minimize and optimize the energy consumption of sensor network nodes. This article, introduces a new heterogeneous-aware routing protocol well known as Extended Z-SEP Routing Protocol with Hierarchical Clustering Approach for Wireless Heterogeneous Sensor Network or EZ-SEP, where the connection of nodes to a base station (BS) is done via a hybrid method, i.e., a certain amount of nodes communicate with the base station directly, while the remaining ones form a cluster to transfer data. Parameters of the field are unknown, and the field is partitioned into zones depending on the node energy. We reviewed the Z-SEP protocol concerning the election of the cluster head (CH) and its communication with BS and presented a novel extended mechanism for the selection of the CH based on remaining residual energy. In addition, EZ-SEP is weighted up using various estimation schemes such as base station repositioning, altering the field density, and variable nodes energy for comparison with the previous parent algorithm. EZ-SEP was executed and compared to routing protocols such as Z-SEP, SEP, and LEACH. The proposed algorithm performed using the MATLAB R2016b simulator. Simulation results show that our proposed extended version performs better than Z-SEP in the stability period due to an increase in the number of active nodes by 48%, in efficiency of network by the high packet delivery coefficient by 16% and optimizes the average power consumption compared to by 34.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913184PMC
http://dx.doi.org/10.3390/s21041021DOI Listing

Publication Analysis

Top Keywords

routing protocol
12
sensor network
12
base station
12
extended z-sep
8
z-sep routing
8
protocol hierarchical
8
hierarchical clustering
8
clustering approach
8
approach wireless
8
wireless heterogeneous
8

Similar Publications

Routing Protocol for Intelligent Unmanned Cluster Network Based on Node Energy Consumption and Mobility Optimization.

Sensors (Basel)

January 2025

State Key Laboratory of Satellite Navigation System and Equipment Technology, The 54th Research Institute, China Electronics Technology Group Corporation (CETC), Shijiazhuang 050081, China.

Intelligent unmanned clusters have played a crucial role in military reconnaissance, disaster rescue, border patrol, and other domains. Nevertheless, due to factors such as multipath propagation, electromagnetic interference, and frequency band congestion in high dynamic scenarios, unmanned cluster networks experience frequent topology changes and severe spectrum limitations, which hinder the provision of connected, elastic and autonomous network support for data interaction among unmanned aerial vehicle (UAV) nodes. To address the conflict between the demand for reliable data transmission and the limited network resources, this paper proposes an AODV routing protocol based on node energy consumption and mobility optimization (AODV-EM) from the perspective of network routing protocols.

View Article and Find Full Text PDF

Tracking Boats on Amazon Rivers-A Case Study with the LoRa/LoRaWAN.

Sensors (Basel)

January 2025

Electronic and Information Technology Research and Development Center (CETELI), Federal University of Amazonas, Manaus 69067-005, AM, Brazil.

The Amazon region has the largest hydrographic basin in the world. The rivers act as roads, and boats serve as vehicles for transporting passengers and cargo to large urban centers, municipalities, riverside communities, villages, and settlements. The Amazon River transportation system faces critical gaps due to the lack of land infrastructure in certain areas, which makes rivers essential for commerce and access to isolated communities.

View Article and Find Full Text PDF

The Internet of Vehicles (IoV) transforms the automobile industry through connected vehicles with communication infrastructure that improves traffic control, safety and information, and entertainment services. However, some issues remain, like data protection, privacy, compatibility with other protocols and systems, and the availability of stable and continuous connections. Specific problems are related to energy consumption for transmitting information, distributing energy loads across the vehicle's sensors and communication units, and designing energy-efficient approaches to processing received data and making decisions in the context of the IoV environment.

View Article and Find Full Text PDF

This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes.

View Article and Find Full Text PDF

Conserving energy of sensor nodes and ensuring balanced workloads among them are fundamental concerns in Wireless Sensor Network (WSN) design. Clustering strategies offer a promising avenue to minimize node energy consumption, thereby prolonging network lifespan. Nevertheless, numerous multi-hop routing protocols using clustering technique face the challenge of nodes nearer to the Base Station (BS) depleting their energy faster due to forwarding data from the entire network leading to premature node failure and network partitioning known as 'hotspot problem'.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!