A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification and prognostic value of a glycolysis-related gene signature in patients with bladder cancer. | LitMetric

Bladder cancer (BC) is one of the most common malignancies worldwide. Several biomarkers related to the prognosis of patients with BC have previously been identified. However, these prognostic models use only one gene and are thus not reliable or accurate enough. The purpose of our study was to develop an innovative gene signature that has greater prognostic value in BC. So, in this study, we performed mRNA expression profiling of glycolysis-related genes in BC (n = 407) cohorts by mining data from The Cancer Genome Atlas (TCGA) database. The glycolysis-related gene sets were confirmed using the Gene Set Enrichment Analysis (GSEA). Using Cox regression analysis, a risk score staging model was built based on the genes that were determined to be significantly associated with BC outcome. Eventually, the system of risk score was structured to predict a patient's survival, and we identified four genes (CHPF, AK3, GALK1, and NUP188) that were associated with the outcomes of BC patients. According to the above-mentioned gene signature, patients were divided into two risk subgroups. The analysis showed that our constructed risk model was independent of clinical features and that the risk score was a highly powerful tool for predicting the overall survival (OS) of BC patients. Taking together, we identified a gene signature associated with glycolysis that could effectively predict the prognosis of BC patients. Our findings offer a new perspective for the clinical research and treatment of BC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7837905PMC
http://dx.doi.org/10.1097/MD.0000000000023836DOI Listing

Publication Analysis

Top Keywords

gene signature
16
risk score
12
glycolysis-related gene
8
signature patients
8
bladder cancer
8
prognosis patients
8
patients identified
8
gene
7
patients
6
risk
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!