A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of varying the Mg with Ca content in highly porous phosphate-based glass microspheres. | LitMetric

Effect of varying the Mg with Ca content in highly porous phosphate-based glass microspheres.

Mater Sci Eng C Mater Biol Appl

Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:

Published: January 2021

This paper reports on the role of phosphate-based glass (PBG) microspheres and their physicochemical properties including in vitro biological response to human mesenchymal stem cells (hMSCs). Solid and porous microspheres were prepared via a flame spheroidisation process. The Mg content in the PBG formulations explored was reduced from 24 to 2 mol% with a subsequent increase in Ca content. A small quantity of TiO (1 mol%) was added to the lower Mg-content glass (2 mol%) to avoid crystallisation. Morphological and physical characterisation of porous microspheres revealed interconnected porosity (up to 76 ± 5 %), average external pore sizes of 55 ± 5 μm with surface areas ranging from 0.38 to 0.43 m g. Degradation and ion release studies conducted compared the solid (non-porous) and porous microspheres and revealed 1.5 to 2.5 times higher degradation rate for porous microspheres. Also, in vitro bioactivity studies using simulated body fluid (SBF) revealed Ca/P ratios for porous microspheres of all three glass formulations were between 0.75 and 0.92 which were within the range suggested for precipitated amorphous calcium phosphate. Direct cell seeding and indirect cell culture studies (via incubation with microsphere degradation products) revealed hMSCs were able to grow and undergo osteogenic differentiation in vitro, confirming cytocompatibility of the formulations tested. However, the higher Mg content (24 mol%) porous microsphere showed the most potent osteogenic response and is therefore considered as a promising candidate for bone repair applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2020.111668DOI Listing

Publication Analysis

Top Keywords

porous microspheres
20
phosphate-based glass
8
microspheres revealed
8
porous
7
microspheres
7
varying content
4
content highly
4
highly porous
4
porous phosphate-based
4
glass
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!