Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Scalable fabrication of Si nanowires with a critical dimension of about 100 nm is essential to a variety of applications. Current techniques used to reach these dimensions often involve e-beam lithography or deep-UV (DUV) lithography combined with resolution enhancement techniques. In this study, we report the fabrication of <150 nm Si nanowires from SOI substrates using DUV lithography ( = 248 nm) by adjusting the exposure dose. Irregular resist profiles generated by in-plane interference under masking patterns of width 800 nm were optimized to split the resulting features into twin Si nanowires. However, masking patterns of micrometre size or more on the same photomask does not generate split features. The resulting resist profiles are verified by optical lithography computer simulation based on Huygens-Fresnel diffraction theory. Photolithography simulation results validate that the key factors in the fabrication of subwavelength nanostructures are the air gap value and the photoresist thickness. This enables the parallel top-down fabrication of Si nanowires and nanoribbons in a single DUV lithography step as a rapid and inexpensive alternative to conventional e-beam techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abe3b6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!