Background And Objectives: Glioblastoma multiforme (GBM) is the most common and malignant type of primary brain tumors. Radiation therapy (RT) plus concomitant and adjuvant Temozolomide (TMZ) constitute standard treatment of GBM. Existing models for GBM growth do not consider the effect of different schedules on tumor growth and patient survival. However, clinical trials show that treatment schedule and drug dosage significantly affect patient survival. The goal is to provide a patient calibrated model for predicting survival according to the treatment schedule.
Methods: We propose a top-down method based on artificial neural networks (ANN) and genetic algorithm (GA) to predict survival of GBM patients. A feed forward undercomplete Autoencoder network is integrated with the neuro-evolutionary (NE) algorithm in order to extract a compressed representation of input clinical data. The proposed NE algorithm uses GA to obtain optimal architecture of a multi-layer perceptron (MLP). Taguchi L orthogonal design of experiments is used to tune parameters of the proposed NE algorithm. Finally, the optimal MLP is used to predict survival of GBM patients.
Results: Data from 8 related clinical trials have been collected and integrated to train the model. From 847 evaluable cases, 719 were used for train and validation and the remaining 128 cases were used to test the model. Mean absolute error of the predictions on the test data is 0.087 months which shows excellent performance of the proposed model in predicting survival of the patients. Also, the results show that the proposed NE algorithm is superior to other existing models in both the mean and variability of the prediction error.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbi.2021.103694 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!