A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A dehydrated, aseptically-processed human amnion/chorion allograft accelerates healing in a delayed murine excisional wound model. | LitMetric

Since chronic, non-healing wounds represent an increasing source of economic and temporal burden for patients who suffer from them and healthcare professionals that treat them, therapeutic modalities that promote closure of delayed and non-healing wounds are of utmost importance. Recent clinical results of allografts derived from amnion and chorion placental layers encourage further investigation of the mechanisms underlying clinical efficacy of these products for treatment of wounds. Here, we utilized a diabetic murine splinted excisional wound model to investigate the effects of a dehydrated human amnion/chorion-derived allograft (dHACA) on delayed wound healing, as well as the effects of dehydrated allograft derived solely from amnion tissue of the same donor. We examined wound healing by histological endpoint analysis, and we assessed other parameters relevant to functional wound healing in the wound bed including angiogenesis, macrophage phenotypes, proliferative activity, and gene expression. Herein we demonstrate that application of dHACA to a murine diabetic model of delayed wound progression results in better macroscale wound resolution outcomes, including rate of closure, compared to unaided wound progression, while dehydrated human amnion allograft (dHAA) fails to improve outcomes. Improved gross wound resolution observed with dHACA was accompanied by increased granulation tissue formation, proliferation and vascular ingrowth observed in the wound bed, early macrophage polarization towards anti-inflammatory phenotypes, and downregulation of pro-fibrotic gene expression. Overall, our data suggest that improvements in the rates of delayed wound closure observed from combined amnion/chorion allografts are associated with modulation of critical cellular and tissue processes commonly found to be dysregulated in delayed healing wounds, including proliferation, vascularization, inflammation, and re-epithelialization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2021.112512DOI Listing

Publication Analysis

Top Keywords

wound
12
delayed wound
12
wound healing
12
excisional wound
8
wound model
8
non-healing wounds
8
effects dehydrated
8
dehydrated human
8
wound bed
8
gene expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!