Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As a typical member of intrinsically disordered proteins (IDPs), HMGA1a carries many post-translational modifications (PTMs). To study the undefined function of acidic tail phosphorylations, seven HMGA1a proteins with site-specific modification(s) were chemically synthesized via Ser/Thr ligation. We found that the phosphorylations significantly inhibit HMGA1a-P53 interaction and the phosphorylations can induce conformational change of HMGA1a from an "open state" to a "close state." Notably, the positively charged lysine-arginine (KR) clusters are responsible for modulating HMGA1a conformation via electrostatic interaction with the phosphorylated acidic tail. Finally, we used a synthetic protein-affinity purification mass spectrometry (SP-AP-MS) methodology to profile the specific interactors, which further supported the function of HMGA1a phosphorylation. Collectively, this study highlights a mechanism for regulating IDPs' conformation and function by phosphorylation of non-protein-binding domain and showcases that the protein chemical synthesis in combination with mass spectrometry can serve as an efficient tool to study the IDPs' PTMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chembiol.2021.01.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!