To seek novel prognostic biomarkers for testicular germ cell tumour (TGCT) and investigate the tumour immune microenvironment, we identified critical differentially expressed genes (DEGs) by overlapping GSE1818 dataset from Gene Expression Omnibus (GEO). Protein-protein interaction (PPI) network was used to investigate key modules and hub genes. Functional enrichment analysis was performed to investigate the underlying molecular functions of the DEGs in TGCT development and progression. The following survival analysis based on The Cancer Genome Atlas (TCGA) TGCT dataset indicated that AKAP4, SPA17 and TNP1 are correlated with TGCT prognosis. Immunohistochemistry and quantitative real-time polymerase chain reaction verified the down-regulation of the 3 hub genes in TGCT. Gene set enrichment analysis was conducted to further explore the role of the 3 hub genes in TGCT respectively. In addition, TGCT samples had high infiltration of CD8+ T cells, M0 and M1 macrophage cells, and resting myeloid dendritic cells in immune microenvironment. We also constructed the microRNA-gene regulatory networks to identify the key upstream microRNAs in TGCT. In conclusion, our findings indicated that AKAP4, SPA17 and TNP1 are promising biomarkers of TGCT. AKAP4 and TNP1 might regulate immune cells infiltration in immune microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/and.13986DOI Listing

Publication Analysis

Top Keywords

immune microenvironment
16
hub genes
12
tgct
9
testicular germ
8
germ cell
8
cell tumour
8
enrichment analysis
8
indicated akap4
8
akap4 spa17
8
spa17 tnp1
8

Similar Publications

Tumor microenvironment and immunotherapy for triple-negative breast cancer.

Biomark Res

December 2024

Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.

Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is characterized by poor responsiveness to immune evasion and immunotherapy. RNA 7-methylguanine (m7G) modification plays a key role in tumorigenesis. However, the mechanisms by which m7G-modified RNA metabolism affects tumor progression are not fully understood, nor is the contribution of m7G-modified RNA to the CRC immune microenvironment.

View Article and Find Full Text PDF

Tumor organoids have emerged as powerful tools for in vitro cancer research due to their ability to retain the structural and genetic characteristics of tumors. Nevertheless, the absence of a complete tumor microenvironment (TME) limits the broader application of organoid models in immunological studies. Given the critical role of immune cells in tumor initiation and progression, the co-culture model of organoids and peripheral blood mononuclear cells (PBMCs) may provide an effective platform for simulating the interactions between immune and tumor cells in vitro.

View Article and Find Full Text PDF

Spatial transcriptomics reveals unique metabolic profile and key oncogenic regulators of cervical squamous cell carcinoma.

J Transl Med

December 2024

Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.

Background: As a prevalent and deadly malignant tumor, the treatment outcomes for late-stage patients with cervical squamous cell carcinoma (CSCC) are often suboptimal. Previous studies have shown that tumor progression is closely related with tumor metabolism and microenvironment reshaping, with disruptions in energy metabolism playing a critical role in this process. To delve deeper into the understanding of CSCC development, our research focused on analyzing the tumor microenvironment and metabolic characteristics across different regions of tumor tissue.

View Article and Find Full Text PDF

NRP1 instructs IL-17-producing ILC3s to drive colitis progression.

Cell Mol Immunol

January 2025

Department of oncology, The Second Hospital of Tianjin Medical University; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases; Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Group 3 innate lymphoid cells (ILC3s) control tissue homeostasis and orchestrate mucosal inflammation; however, the precise mechanisms governing ILC3 activity are fully understood. Here, we identified the transmembrane protein neuropilin-1 (NRP1) as a positive regulator of interleukin (IL)-17-producing ILC3s in the intestine. NRP1 was markedly upregulated in intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) compared with healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!