Download full-text PDF

Source
http://dx.doi.org/10.1111/his.14348DOI Listing

Publication Analysis

Top Keywords

microvillus inclusion
4
inclusion disease
4
disease novel
4
novel myo5b
4
myo5b pathogenic
4
pathogenic variants
4
microvillus
1
disease
1
novel
1
myo5b
1

Similar Publications

SLC26A3 (DRA, the Congenital Chloride Diarrhea Gene): A Novel Therapeutic Target for Diarrheal Diseases.

Cell Mol Gastroenterol Hepatol

December 2024

- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, USA; - Jesse Brown VA Medical Center, Chicago, IL, USA. Electronic address:

Diarrhea associated with enteric infections, gut inflammation, and genetic defects poses a major health burden and results in significant morbidity and mortality. Impaired fluid and electrolyte absorption and/or secretion in the intestine are the hallmark of diarrhea. Electroneutral NaCl absorption in the mammalian GI tract involves the coupling of Na/H and Cl/HCO exchangers.

View Article and Find Full Text PDF

Is LPAR5 agonist a new treatment for microvilli inclusion disease?

Am J Physiol Gastrointest Liver Physiol

January 2025

Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States.

View Article and Find Full Text PDF
Article Synopsis
  • Syntaxin 3 is part of a protein family crucial for the fusion of vesicles with membranes, impacting various cellular processes.
  • Mutations in the syntaxin 3A splice form are linked to a serious gut disorder, while additional mutations involving syntaxin 3B can lead to early-onset retinal diseases.
  • The review focuses on new research highlighting the functions of syntaxin 3B in membrane fusion and neurotransmitter release specifically in the vertebrate retina.
View Article and Find Full Text PDF

Functional loss of the motor protein myosin Vb (MYO5B) induces various defects in intestinal epithelial function and causes a congenital diarrheal disorder, namely, microvillus inclusion disease (MVID). Utilizing the MVID model mice (MYO5BΔIEC) and [MYO5B(G519R)], we previously reported that functional MYO5B loss disrupts progenitor cell differentiation and enterocyte maturation that result in villus blunting and deadly malabsorption symptoms. In this study, we determined that both absence and a point mutation of MYO5B impair lipid metabolism and alter mitochondrial structure, which may underlie the progenitor cell malfunction observed in the MVID intestine.

View Article and Find Full Text PDF
Article Synopsis
  • - Functional loss of the motor protein MYO5B leads to serious intestinal issues, including microvillus inclusion disease (MVID), characterized by progenitor cell dysfunction and malabsorption symptoms.
  • - Research using MVID model mice showed that both the absence and mutation of MYO5B disrupt lipid metabolism and mitochondrial structure, resulting in reduced fatty acid oxidation and altered energy metabolism.
  • - Treatment with Compound-1, which targets LPAR5, was found to improve intestinal function and weight loss in mice with MYO5B mutations, suggesting a potential therapeutic approach for treating MVID.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!