Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fibrillar fibronectin (FFN), an active form of fibronectin (FN), plays important roles in various cellular processes. Our goal is to investigate effect of FFN morphology on cellular behaviors. Plasma FN at two concentrations was cross-linked into FFN by dialysis against 2 M urea followed by morphological analysis under Scanning Electron Microscopy. To evaluate effect of FFN morphology, fibroblasts were cultured on FN or different FFNs. Fibroblast behaviors including adhesion, spreading, and migration were evaluated. Our data showed that FN fibrillogenesis was dependent on FN concentration. At high concentrations (0.75 mg/mL), large FFN approximately 2.167 + 0.875 µm in diameter were formed with attached nodular structures and rough surface. In contrast, smooth surface FFN fibrils with diameter of 1.886 + 0.412 µm were formed from FN at 0.25 mg/mL. Cellular assays revealed morphological dependent biological effects of different FFNs. Fibroblast separately adhered to native FN and remained spherical while on FFN, cells attached with higher quantity and showed spreading morphology. A synergistic ligand interaction of integrin α5β1 and αvβ3 was observed in cell adhering on FFN. Cell migration results showed that large FFN decreased migration rate while small FFN did not. Taken together, our data draws new attention towards controlling biological function of FN by its fibrillar structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/hsz-2019-0402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!