Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Within the midgut gland of the Christmas Island red crab, Gecarcoidea natalis, a single transcript for a GH5_10 endo-β-1,4-mannase had the highest expression out of all of the carbohydrase enzymes (Gan et al. in Mar Biotechnol 20:654-665, 2018). The activity, and potential digestive importance of this hemicellulase, compared with other carbohydrases, has yet to be established. The digestive fluid of G. natalis contained substantial endo-β-1,4-mannase activities (630 ± 55 (6) nmol reducing sugars. min. mg protein). It was present as a single isozyme of 66.3 ± 0.7 kDa (n = 6). Endo-β-1,4-mannase activities were higher than that for lichenase and endo-β-1,4-glucanase but lower than that for β-1,3-glucanase and amylase. The digestive fluid was able to hydrolyse, galactomannan, into its component monosaccharides. Hence, this confirms expression data that this enzyme is one of the most important digestive cellulases/ hemicellulases. Expression of GH5_10 endo-β-1,4-mannase mRNA was consistent with that of a digestive enzyme, as it was expressed in the digestive midgut gland but not in muscle and gill. Endo-β-1,4-mannase activities were also present within the digestive fluid of the terrestrial hermit crabs, Coenobita perlatus and Coenobita brevimanus. Endo-β-1,4-mannase activities (1351 ± 136 (n=3) nmol reducing sugars. min mg protein for C. perlatus. 665 ± 32 n=(5) nmol reducing sugars. min mg protein for C. brevimanus) were higher than that for endo-β-1,4-glucanase and amylase but were lower than β-1,3-glucanase activities. Animals within the terrestrial hermit crab family, Coenobitidae consume legume and palm seeds which contain substantial amounts of mannan. Hence, high endo-β-1,4-mannase activities suggest that digestion of mannan within these species may represent an important source of carbohydrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00360-021-01342-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!