A first-principles study on the electronic and optical properties of a type-II CN/g-ZnO van der Waals heterostructure.

Phys Chem Chem Phys

School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong 523808, China.

Published: February 2021

The structural, electronic and optical properties of a new van der Waals heterostructure, C2N/g-ZnO, composed of C2N and g-ZnO monolayers with an intrinsic type-II band alignment and a direct bandgap of 0.89 eV at the Γ point, are extensively studied using first-principles density functional theory calculations. The results indicate that the special optoelectronic properties of the constructed heterostructure mainly originate from the interlayer coupling and electron transfer between the C2N and g-ZnO monolayers, and the photogenerated electrons and holes are located on the C2N and g-ZnO layers, respectively, which reduces the recombination probability of the electron-hole pairs. According to Bader charge analysis, there are 0.029 electrons transferred from g-ZnO to C2N to form a built-in electric field of ∼9.5 eV at the interface. Furthermore, the tunability of the electronic properties of the C2N/g-ZnO heterostructure under vertical strain and electric field is explored. Under different strains, the type-II band alignment properties of the heterostructure are retained and the vertical compressive strain has a greater influence on the bandgap modulation than the vertical stretching strain. The implemented electric field also does not change the type-II band alignment but changes the bandgap of the heterostructure from 1.30 to 0.58 eV when the electric field strength varies from -0.6 to 0.6 V Å-1. In addition, the absorption spectrum of the C2N/g-ZnO heterostructure under solar light is also studied. The absorption range of the heterostructure varies from the ultraviolet to near-infrared region with the absorption intensity in the order of 105 cm-1. All of these studies indicate that the C2N/g-ZnO heterostructure has excellent electronic and optical properties and promising applications in nanoelectronics and optoelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp00122aDOI Listing

Publication Analysis

Top Keywords

electric field
16
electronic optical
12
optical properties
12
c2n g-zno
12
type-ii band
12
band alignment
12
c2n/g-zno heterostructure
12
heterostructure
9
van der
8
der waals
8

Similar Publications

Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).

View Article and Find Full Text PDF

A Discussion on the Critical Electric Rayleigh Number for AC Electrokinetic Flow of Binary Fluids in a Divergent Microchannel.

Langmuir

January 2025

State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710127, China.

Electrokinetic (EK) flow is a type of flow driven or manipulated by electric body forces, influenced by various factors such as electric field intensity, electric field form, frequency, electric permittivity/conductivity, fluid viscosity, etc. The diversity of dimensionless parameters, such as the electric Rayleigh number, complicates the comparison of the EK flow stability. Consequently, comparing the performance and cost of micromixers or reactors based on EK flow is challenging, posing an obstacle to their industrial and engineering applications.

View Article and Find Full Text PDF

The ventromedial prefrontal cortex (VMPFC), located along the medial aspect of the frontal area, plays a critical role in regulating arousal/emotions. Its intricate connections with subcortical structures, including the striatum and amygdala, highlight the VMPFC's importance in the neurocircuitry of addiction. Due to these features, the VMPFC is considered a promising target for transcranial magnetic stimulation (TMS) in substance use disorders (SUD).

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Daegu Catholic University, Daegu, Daegu Metropolitan City, Korea, Republic of (South).

Background: The interplaying neuropathology of amyloid plaque, tau tangles, and microglia-driven inflammation (tri-pathology) are related to neuronal and synaptic loss damage in Alzheimer's damages. Interventions that target Aβ or tau individually have not yielded substantial breakthroughs. Iron plays a pivotal role in tri-pathology by protein-bound iron-oxide deposition in amyloid plaque, tau tangle, and microglia, resulting in redox-active toxicity or microglial response induction, such as proinflammatory activation, autophagy dysfunction, and ferroptosis.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) affects over 55 million people worldwide and is characterized by abnormal deposition of amyloid-β and tau in the brain causing neuronal damage and disrupting transmission within brain circuits. Episodic memory loss, executive deficits, and depression are common symptoms arising from altered function in spatially distinct brain circuits that greatly contribute to disability. Transcranial electrical stimulation (tES) can target these circuits and has shown promise to relieve specific symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!