Background: Elevated cardiac troponin, which indicates cardiomyocyte injury, is common after acute ischemic stroke and is associated with poor functional outcome. Myocardial injury is part of a broad spectrum of cardiac complications that may occur after acute ischemic stroke. Previous studies have shown that in most patients, the underlying mechanism of stroke-associated myocardial injury may not be a concomitant acute coronary syndrome. Evidence from animal research and clinical and neuroimaging studies suggest that functional and structural alterations in the central autonomic network leading to stress-mediated neurocardiogenic injury may be a key underlying mechanism (ie, stroke-heart syndrome). However, the exact pathophysiological cascade remains unclear, and the diagnostic and therapeutic implications are unknown.

Objective: The aim of this CORONA-IS (Cardiomyocyte injury following Acute Ischemic Stroke) study is to quantify autonomic dysfunction and to decipher downstream cardiac mechanisms leading to myocardial injury after acute ischemic stroke.

Methods: In this prospective, observational, single-center cohort study, 300 patients with acute ischemic stroke, confirmed via cerebral magnetic resonance imaging (MRI) and presenting within 48 hours of symptom onset, will be recruited during in-hospital stay. On the basis of high-sensitivity cardiac troponin levels and corresponding to the fourth universal definition of myocardial infarction, 3 groups are defined (ie, no myocardial injury [no cardiac troponin elevation], chronic myocardial injury [stable elevation], and acute myocardial injury [dynamic rise/fall pattern]). Each group will include approximately 100 patients. Study patients will receive routine diagnostic care. In addition, they will receive 3 Tesla cardiovascular MRI and transthoracic echocardiography within 5 days of symptom onset to provide myocardial tissue characterization and assess cardiac function, 20-min high-resolution electrocardiogram for analysis of cardiac autonomic function, and extensive biobanking. A follow-up for cardiovascular events will be conducted 3 and 12 months after inclusion.

Results: After a 4-month pilot phase, recruitment began in April 2019. We estimate a recruitment period of approximately 3 years to include 300 patients with a complete cardiovascular MRI protocol.

Conclusions: Stroke-associated myocardial injury is a common and relevant complication. Our study has the potential to provide a better mechanistic understanding of heart and brain interactions in the setting of acute stroke. Thus, it is essential to develop algorithms for recognizing patients at risk and to refine diagnostic and therapeutic procedures.

Trial Registration: Clinicaltrials.gov NCT03892226; https://www.clinicaltrials.gov/ct2/show/NCT03892226.

International Registered Report Identifier (irrid): DERR1-10.2196/24186.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895641PMC
http://dx.doi.org/10.2196/24186DOI Listing

Publication Analysis

Top Keywords

myocardial injury
28
acute ischemic
24
ischemic stroke
20
cardiomyocyte injury
12
injury acute
12
cardiac troponin
12
injury
10
acute
9
myocardial
9
prospective observational
8

Similar Publications

Peripartum cardiomyopathy (PPCM) and takotsubo cardiomyopathy (TCM) are cardiac conditions that can occur in the peripartum period. They have distinct characteristics and incidence rates; although rare, both contribute to the second leading cause of all-cause maternal mortality in the state of Missouri. PPCM can lead to heart failure, and TCM can cause acute arrhythmias leading to sudden cardiac death in otherwise healthy individuals.

View Article and Find Full Text PDF

Background: The efficacy of dexmedetomidine (DEX) in treating sepsis-induced myocardial injury (SIMI) remains unclear. In this study, we explored the relationship between DEX use and clinical outcomes of patients with SIMI, focusing on the dosage and treatment duration.

Methods: In this retrospective cohort analysis, we identified patients with SIMI from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database and categorized them into the DEX and non-DEX groups based on intensive care unit treatment.

View Article and Find Full Text PDF

To explore the intergenerational cardiotoxicity of nanoplastics, maternal mice were exposed to 60 nm polystyrene nanoplastics (PS-NP) during pregnancy and lactation. The results showed that PS-NP can enter the hearts of offspring and induce myocardial fiber arrangement disorder, acidophilic degeneration of cardiomyocytes, and elevated creatine kinase isoenzymes (CK-MB) and lactate dehydrogenase (LDH) levels after maternal exposure to PS-NP at 100 mg/kg during pregnancy and lactation. Mechanistically, KEGG analysis of RNA sequencing showed the participation of hypoxia-inducible factor-1 (HIF-1) and ferroptosis in PS-NP-induced cardiotoxicity.

View Article and Find Full Text PDF

Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

View Article and Find Full Text PDF

Introduction: To improve surgical quality and safety, health systems must prioritise equitable care for surgical patients. Racialised patients experience worse postoperative outcomes when compared with non-racialised surgical patients in settler colonial nation-states. Identifying preventable adverse outcomes for equity-deserving patient populations is an important starting point to begin to address these gaps in care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!