We present simultaneous measurements of Josephson inductance and dc transport characteristics of ballistic Josephson junctions based upon an epitaxial Al-InAs heterostructure. The Josephson inductance at finite current bias directly reveals the current-phase relation. The proximity-induced gap, the critical current and the average value of the transparency τ[over ¯] are extracted without need for phase bias, demonstrating, e.g., a near-unity value of τ[over ¯]=0.94. Our method allows us to probe the devices deeply in the nondissipative regime, where ordinary transport measurements are featureless. In perpendicular magnetic field the junctions show a nearly perfect Fraunhofer pattern of the critical current, which is insensitive to the value of τ[over ¯]. In contrast, the signature of supercurrent interference in the inductance turns out to be extremely sensitive to τ[over ¯].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.126.037001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!