In this paper, we described the design, synthesis, and characterization of two novel naphthalene diimide (NDI) core-based targets modified with terminal fullerene (C ) yield - so called S4 and S5, in which NDI bearing 1 and 2 molecules of C , respectively. The absorption, electrochemical and thin-film transistor characteristics of the newly developed targets were investigated in detail. Both S4 and S5 displayed broad absorption in the 450-500 nm region, owing to the effect of conjugation due to fullerene functionalities. The electrochemical measurement suggested that the HOMO and the LUMO energy levels can be altered with the number of C units. Both S4 and S5 were employed as organic semiconductor materials in n-channel transistors. The thin film transistor based on S4 exhibited superior electron mobility (μe) values ranging from 1.20×10 to 3.58×10  cm  V  s with a current on-off ratio varying from 10 to 10 in comparison with the performance of S5 based transistor, which exhibited μe ranging from 8.33×10 to 2.03×10  cm  V  s depending on channel lengths.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015730PMC
http://dx.doi.org/10.1002/open.202000230DOI Listing

Publication Analysis

Top Keywords

naphthalene diimide
8
thin film
8
 cm  v
8
 v  s
8
conjoint naphthalene
4
diimide fullerene
4
fullerene derivatives
4
derivatives generate
4
generate organic
4
organic semiconductors
4

Similar Publications

A metal-organic framework with mixed electron donor and electron acceptor ligands for efficient lithium-ion storage.

Chem Commun (Camb)

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.

Electron donor tetrathiafulvalene (TTF) and electron acceptor naphthalene diimide (NDI) derivatives were used to synthesize a 3D Zn-TTF/NDI-MOF. Multiple redox active sites and charge transfer endow the pristine MOF anode with excellent rate behavior and long term cycling performance (with an average specific capacity of 956 mA h g at 1 A g over 600 cycles). This study highlights the great potential of elaborately-designed MOFs for developing efficient anode materials.

View Article and Find Full Text PDF

Aromatic diimides such as naphthalene diimide (NDI) and pyromellitic diimide (MDI) are important building blocks for organic electrode materials. They feature a two-electron redox mechanism that allows for energy storage. Due to the smaller size of MDI compared to NDI its theoretical capacity is higher.

View Article and Find Full Text PDF

Designing the architecture of donor-acceptor (D-A) pairs is an effective strategy to tailor the electronic structure of conjugated macrocycles for optoelectronic devices. Herein, we present the synthesis of three D-A nanohoops ( = 7, 8, 9) containing a naphthalene diimide (NDI) unit as an acceptor and []cycloparaphenylenes ([]CPPs) moieties as donors. The D-A characteristics of were substantiated through absorption and fluorescence spectroscopic studies, electrochemical investigations, and computational analysis.

View Article and Find Full Text PDF

Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent.

View Article and Find Full Text PDF

Precise control of assembled structures of quantum dots (QDs) is crucial for realizing the desired photophysical properties, but this remains challenging. Especially, the one-dimensional (1D) control is rare due to the nearly isotropic nature of QDs. Herein, we propose a novel strategy for controlling the 1D-arrangement range of cubic perovskite QDs in solution based on the morphological modification of a supramolecular polymer (SP) template.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!