Objectives: Body surface area (SA) is a widely used physical measure incorporated into multiple thermophysiology and evolutionary biology models currently estimated in humans either with empirical prediction equations or costly whole-body laser imaging systems. The introduction of low-cost 3D scanners provides a new opportunity to quantify total body (TB) and regional SA, although a critical question prevails: can these devices acquire the quality of depth information and process this initial data to form a mesh that has the fidelity needed to generate accurate SA estimates?
Materials And Methods: This question was answered by comparing SA estimates calculated using images from four commercial 3D scanners in 108 adults to corresponding estimates acquired with a whole-body laser system. This was accomplished by processing initial mesh data from all devices, including the laser system, with the same universal software adapted specifically for repairing mesh gaps, identifying landmarks, and generating SA measurements.
Results: TB SA measured on all four 3D scanners was highly correlated with corresponding laser system estimates (R s, 0.98-0.99; all p < 0.001) with some small but significant mean differences (-0.19 to 0.06 m ); root-mean square errors (RMSEs) were small (0.02-0.03 m ); and significant bias was present for one device. Qualitatively similar results (e.g., R s, 0.78-0.95; mean Δs, -0.05 to 0.02 m ; RMSEs, 0.01-0.03 m ) were present for trunk, arm, and leg SA comparisons.
Discussion: The current study observations demonstrate that low-cost and practical 3D optical scanners are capable of accurately quantifying TB and regional SA, thus opening new opportunities for evaluating human phenotypes and related physiological characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajpa.24243 | DOI Listing |
Nat Commun
December 2024
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China.
Smart control of energy interactions plays a key role in manipulating upconversion dynamics and tuning emission colors for lanthanide-doped materials. However, quantifying the energy flux in particular energy migration in the representative sensitizer-activator coupled upconversion system has remained a challenge. Here we report a conceptual model to examine the energy flux in a single nanoparticle by designing an interfacial energy transfer mediated nanostructure.
View Article and Find Full Text PDFNat Commun
December 2024
Elettra - Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149, Trieste, Italy.
Light manipulation at the nanoscale is essential both for fundamental science and modern technology. The quest to shorter lengthscales, however, requires the use of light wavelengths beyond the visible. In particular, in the extreme ultraviolet regime these manipulation capabilities are hampered by the lack of efficient optics, especially for polarization control.
View Article and Find Full Text PDFPhotochem Photobiol
December 2024
Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil.
Given that non-equilibrium molecular motion in thermal gradients is influenced by both solute and solvent, the application of spectroscopic methods that probe each component in a binary mixture can provide insights into the molecular mechanisms of thermal diffusion for a large class of systems. In the present work, we use an all-optical setup whereby near-infrared excitation of the solvent leads to a steady-state thermal gradient in solution, followed by characterization of the non-equilibrium system with electronic spectroscopy, imaging, and intensity. Using rhodamine B in water as a case study, we perform measurements as a function of solute concentration, temperature, wavelength, time, near-infrared laser power, visible excitation wavelength, and isotope effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!