Real-Time Optogenetics System for Controlling Gene Expression Using a Model-Based Design.

Anal Chem

Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montréal, Québec H3G1M8, Canada.

Published: February 2021

AI Article Synopsis

  • The study focuses on using optogenetics to control gene expression more accurately than traditional methods, allowing for better management of engineered biological systems.
  • A real-time optogenetics platform was developed to control the CcaR-CcaS two-plasmid system, enabling closed-loop control through model-based design.
  • The platform demonstrates the ability to adjust gene expression by inducing or repressing the system while monitoring biological data, providing a foundation for similar applications in other biological systems.

Article Abstract

Optimization of engineered biological systems requires precise control over the rates and timing of gene expression. Optogenetics is used to dynamically control gene expression as an alternative to conventional chemical-based methods since it provides a more convenient interface between digital control software and microbial culture. Here, we describe the construction of a real-time optogenetics platform, which performs closed-loop control over the CcaR-CcaS two-plasmid system in . We showed the first model-based design approach by constructing a nonlinear representation of the CcaR-CcaS system, tuned the model through open-loop experimentation to capture the experimental behavior, and applied the model to inform the necessary changes to build a closed-loop optogenetic control system. Our system periodically induces and represses the CcaR-CcaS system while recording optical density and fluorescence using image processing techniques. We highlight the facile nature of constructing our system and how our model-based design approach will potentially be used to model other systems requiring closed-loop optogenetic control.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c04594DOI Listing

Publication Analysis

Top Keywords

gene expression
12
model-based design
12
real-time optogenetics
8
system model-based
8
design approach
8
ccar-ccas system
8
closed-loop optogenetic
8
optogenetic control
8
system
7
control
6

Similar Publications

Bone regeneration in sheep model induced by strontium-containing mesoporous bioactive glasses.

Biomater Adv

December 2024

Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28040 Madrid, Spain. Electronic address:

Local delivery of therapeutic ions from bioactive mesoporous glasses (MBGs) is postulated as one of the most promising strategies for regenerative therapy of critical bone defects. Among these ions, Sr cation has been widely considered for this purpose as part of the composition of MBGs. MBGs of chemical composition 75SiO-25-x CaO-5PO-xSrO with x = 0, 2.

View Article and Find Full Text PDF

Here, we present a protocol to alter the production of alternatively spliced mRNA variants, without affecting the overall gene expression, through CRISPR-Cas9-engineered genomic mutations in mice. We describe steps for designing guide RNA to direct Cas9 endonuclease to consensus splice sites, producing transgenic mice through pronuclear injection, and screening for desired mutations in cultured mammalian cells using a minigene splicing reporter. Splice isoform-specific mouse mutants provide valuable tools for genetic analyses beyond loss-of-function and transgenic alleles.

View Article and Find Full Text PDF

Senescence is a tumor suppressor mechanism triggered by oncogene expression and chemotherapy treatment. It orchestrates a definitive cessation of cell proliferation through the activation of the p53-p21 and p16-Rb pathways, coupled with the compaction of proliferative genes within heterochromatin regions. Some cancer cells have the ability to elude this proliferative arrest but the signaling pathways involved in circumventing senescence remain to be characterized.

View Article and Find Full Text PDF

Overexpression of AtbZIP69 in transgenic wheat confers tolerance to nitrogen and drought stress.

Planta

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.

View Article and Find Full Text PDF

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!