Radiotherapy plays an important role in the treatment of hepatocellular carcinoma (HCC). Cyclin G1 is a novel member of the cyclin family, and it is abnormally expressed in HCC. In this study we investigated the role of cyclin G1 in the radiotherapy of HCC cells. The expression of cyclin G1 was silenced by transfection of cyclin G1-siRNA into HepG2 cells and Huh7 cells, and the expression of cyclin G1 mRNA and protein was measured by qRT-PCR and Western blot analysis. The proliferation was analyzed using MTT assay, and the radiosensitivity of HCC cells was detected using colony formation assay and a xenograft tumor model. The expression of apoptosis-related proteins (Bcl-2 and Bax) was detected by Western blot analysis, and caspase-3 was detected using fluorimetry. The expression of cyclin G1 mRNA and protein in HepG2/Huh7-cyclin G1-siRNA cells was found to be significantly decreased compared to that in HepG2/Huh7 cells. Silencing the expression of cyclin G1 inhibited the proliferation of HCC cells and enhanced radiosensitivity in HCC cells in vitro and in vivo. Knockdown of cyclin G1 expression significantly decreased Bcl-2 expression, and increased Bax expression and caspase-3 activity in HCC cells. Silencing of cyclin G1 expression enhances the radiosensitivity of HCC cells in vitro and in vivo. The mechanism for this may be related to the regulation of apoptosis-related proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1667/RADE-20-00180.1DOI Listing

Publication Analysis

Top Keywords

hcc cells
24
expression cyclin
20
vitro vivo
12
radiosensitivity hcc
12
cyclin
11
cells
10
expression
9
silencing expression
8
enhances radiosensitivity
8
hepatocellular carcinoma
8

Similar Publications

Hepatocellular carcinoma (HCC) is characterized by a poor prognosis globally. PAX-interacting protein 1 (PAXIP1) serves a key role in the development of numerous human cancer types. Nevertheless, its specific involvement in HCC remains poorly understood.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is an aggressive disease with poor prognosis, necessitating preclinical models for evaluating novel therapies. Large animal models are particularly valuable for assessing locoregional therapies, which are widely employed across HCC stages. This study aimed to develop a large animal HCC model with tailored tumor mutations.

View Article and Find Full Text PDF

Premetastatic cancer cells often spread from the primary lesion through the lymphatic vasculature and, clinically, the presence or absence of lymph node metastases impacts treatment decisions. However, little is known about cancer progression via the lymphatic system or of the effect that the lymphatic environment has on cancer progression. This is due, in part, to the technical challenge of studying lymphatic vessels and collecting lymph fluid.

View Article and Find Full Text PDF

hsa_circ_0008305 facilitates the malignant progression of hepatocellular carcinoma by regulating AKR1C3 expression and sponging miR-379-5p.

Sci Rep

January 2025

Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330000, Jiangxi Province, P.R. China.

Circular RNAs (circRNAs) are widely involved in diverse biological processes of cancers. Nonetheless, the potential function of hsa_circ_0008305 in hepatocellular carcinoma (HCC) remains largely unknown. This study aims to elucidate the role and underlying mechanism of hsa_circ_0008305 in HCC.

View Article and Find Full Text PDF

S100P is a ferroptosis suppressor to facilitate hepatocellular carcinoma development by rewiring lipid metabolism.

Nat Commun

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.

Ferroptosis is a newly identified programmed cell death induced by iron-driven lipid peroxidation and implicated as a potential approach for tumor treatment. However, emerging evidence indicates that hepatocellular carcinoma (HCC) cells are generally resistant to ferroptosis and the underlying molecular mechanism is poorly understood. Here, our study confirms that S100 calcium binding protein P (S100P), which is significantly up-regulated in ferroptosis-resistant HCC cells, efficiently inhibits ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!