Shoot branching is a pivotal process during plant growth and development, and is antagonistically orchestrated by auxin and sugars. In contrast to extensive investigations on hormonal regulatory networks, our current knowledge on the role of sugar signalling pathways in bud outgrowth is scarce. Based on a comprehensive stepwise strategy, we investigated the role of glycolysis/the tricarboxylic acid (TCA) cycle and the oxidative pentose phosphate pathway (OPPP) in the control of bud outgrowth. We demonstrated that these pathways are necessary for bud outgrowth promotion upon plant decapitation and in response to sugar availability. They are also targets of the antagonistic crosstalk between auxin and sugar availability. The two pathways act synergistically to down-regulate the expression of BRC1, a conserved inhibitor of shoot branching. Using Rosa calluses stably transformed with GFP-fused promoter sequences of RhBRC1 (pRhBRC1), glycolysis/TCA cycle and the OPPP were found to repress the transcriptional activity of pRhBRC1 cooperatively. Glycolysis/TCA cycle- and OPPP-dependent regulations involve the -1973/-1611 bp and -1206/-709 bp regions of pRhBRC1, respectively. Our findings indicate that glycolysis/TCA cycle and the OPPP are integrative parts of shoot branching control and can link endogenous factors to the developmental programme of bud outgrowth, likely through two distinct mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erab046DOI Listing

Publication Analysis

Top Keywords

bud outgrowth
16
shoot branching
12
pathways bud
8
sugar availability
8
glycolysis/tca cycle
8
cycle oppp
8
outgrowth
5
bud
5
outgrowth axillary
4
axillary bud
4

Similar Publications

Expression of SRY-box transcription factor 17 (Sox17) in the endodermal region caudal to the hepatic diverticulum during late gastrulation is necessary for hepato-pancreato-biliary system formation. Analysis of an allelic series of promoter-proximal mutations near the transcription start site (TSS) 2 of Sox17 has revealed that gallbladder (GB) and extrahepatic bile duct (EHBD) development is exquisitely sensitive to Sox17 expression levels. Deletion of a SOX17-binding cis-regulatory element in the TSS2 promoter impairs GB&EHBD development by reducing outgrowth of the nascent biliary bud.

View Article and Find Full Text PDF

5'Hox genes regulate pattern formation along the axes of the limb. Previously, we showed that Hoxa13/Hoxd13 double-mutant newts lacked all digits of the forelimbs during development and regeneration, showing that newt Hox13 is necessary for digit formation in development and regeneration. In addition, we found another unique phenotype.

View Article and Find Full Text PDF

Sugar Transport and Signaling in Shoot Branching.

Int J Mol Sci

December 2024

Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France.

The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates.

View Article and Find Full Text PDF

Discovery of 4-(2-Phenylethynyl) benzoic Acid as a Potential Potent Chemical Pruner.

Plant Cell Physiol

December 2024

Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou 310018, P.R. China.

Rocketing labor cost is a major challenge threatening agricultural sustainability and food security worldwide. The replacement of manual pruning of horticultural plants with chemical pruning has long been a goal for saving cost and reducing virus spreading. Here, guided by the structure-function relationship of allelochemical benzoic acid derivatives, we have identified 4-(2-phenylethynyl)-benzoicacid (PEBA) as a highly bioactive compound.

View Article and Find Full Text PDF

The SLR1-OsMADS23-D14 module mediates the crosstalk between strigolactone and gibberellin signaling to control rice tillering.

New Phytol

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.

Article Synopsis
  • Strigolactones (SLs) and gibberellins (GAs) both inhibit rice branching (tillering), but how they interact at the molecular level is not well understood.
  • The transcription factor OsMADS23 is key in linking SL and GA signaling, where its loss leads to fewer tillers and its overexpression promotes more tiller growth.
  • OsMADS23 interacts with the DELLA protein SLENDER RICE1 (SLR1), enhancing each other's stability, and together they inhibit the expression of the SL receptor gene DWARF14 (D14), demonstrating a complex relationship that regulates rice tillering.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!