AI Article Synopsis

  • *In stressed mice, researchers found changes in important brain areas that control how new brain cells develop and move.
  • *Certain genes linked to stress and food motivation were highlighted, suggesting that stress might mess with brain cell creation by affecting how different parts of the brain connect and communicate.

Article Abstract

Adult hippocampal neurogenesis is involved in stress-related disorders such as depression, posttraumatic stress disorders, as well as in the mechanism of antidepressant effects. However, the molecular mechanisms involved in these associations remain to be fully explored. In this study, unpredictable chronic mild stress in mice resulted in a deficit in neuronal dendritic tree development and neuroblast migration in the hippocampal neurogenic niche. To investigate molecular pathways underlying neurogenesis alteration, genome-wide gene expression changes were assessed in the prefrontal cortex, hippocampus and the hypothalamus alongside neurogenesis changes. Cluster analysis showed that the transcriptomic signature of chronic stress is much more prominent in the prefrontal cortex compared to the hippocampus and the hypothalamus. Pathway analyses suggested huntingtin, leptin, myelin regulatory factor, methyl-CpG binding protein and brain-derived neurotrophic factor as the top predicted upstream regulators of transcriptomic changes in the prefrontal cortex. Involvement of the satiety regulating pathways (leptin) was corroborated by behavioural data showing increased food reward motivation in stressed mice. Behavioural and gene expression data also suggested circadian rhythm disruption and activation of circadian clock genes such as Period 2. Interestingly, most of these pathways have been previously shown to be involved in the regulation of adult hippocampal neurogenesis. It is possible that activation of these pathways in the prefrontal cortex by chronic stress indirectly affects neuronal differentiation and migration in the hippocampal neurogenic niche via reciprocal connections between the two brain areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7850288PMC
http://dx.doi.org/10.1093/braincomms/fcaa153DOI Listing

Publication Analysis

Top Keywords

prefrontal cortex
20
chronic stress
12
gene expression
12
adult hippocampal
12
hippocampal neurogenesis
12
expression changes
8
changes prefrontal
8
migration hippocampal
8
hippocampal neurogenic
8
neurogenic niche
8

Similar Publications

Identifying cell types and brain regions critical for psychiatric disorders and brain traits is essential for targeted neurobiological research. By integrating genomic insights from genome-wide association studies with a comprehensive single-cell transcriptomic atlas of the adult human brain, we prioritized specific neuronal clusters significantly enriched for the SNP-heritabilities for schizophrenia, bipolar disorder, and major depressive disorder along with intelligence, education, and neuroticism. Extrapolation of cell-type results to brain regions reveals the whole-brain impact of schizophrenia genetic risk, with subregions in the hippocampus and amygdala exhibiting the most significant enrichment of SNP-heritability.

View Article and Find Full Text PDF

Background: Mild cognitive impairment (MCI) is a high-risk factor for dementia and dysphagia; therefore, early intervention is vital. The effectiveness of intermittent theta burst stimulation (iTBS) targeting the right dorsal lateral prefrontal cortex (rDLPFC) remains unclear.

Methods: Thirty-six participants with MCI were randomly allocated to receive real (n = 18) or sham (n = 18) iTBS.

View Article and Find Full Text PDF

Face pareidolia minimally engages macaque face selective neurons.

Prog Neurobiol

January 2025

Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health; Bethesda, MD, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute; Bethesda, MD, USA. Electronic address:

The macaque cerebral cortex contains concentrations of neurons that prefer faces over inanimate objects. Although these so-called face patches are thought to be specialized for the analysis of facial signals, their exact tuning properties remain unclear. For example, what happens when an object by chance resembles a face? Everyday objects can sometimes, through the accidental positioning of their internal components, appear as faces.

View Article and Find Full Text PDF

Sleep deprivation affects pain sensitivity by increasing oxidative stress and apoptosis in the medial prefrontal cortex of rats via the HDAC2-NRF2 pathway.

Biomed J

January 2025

Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China. Electronic address:

Sleep is crucial for sustaining normal physiological functions, and sleep deprivation has been associated with increased pain sensitivity. The histone deacetylases (HDACs) are known to significantly regulate in regulating neuropathic pain, but their involvement in nociceptive hypersensitivity during sleep deprivation is still not fully understood. Utilizing a modified multi-platform water environment technique to establish a sleep deprivation model.

View Article and Find Full Text PDF

Exploring SERPINA3 as a neuroinflammatory modulator in Alzheimer's disease with sex and regional brain variations.

Metab Brain Dis

January 2025

Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.

SERPINA3, a serine protease inhibitor, is strongly associated with neuroinflammation, a typical condition of AD. Its expression is linked to microglial and astrocytic markers, suggesting it plays a significant role in modulating neuroinflammatory responses. In this study, we examined the SERPINA3 expression levels, along with CHI3L1, in various brain regions of AD patients and non-demented healthy controls (NDHC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!