Inflammatory breast cancer (IBC) is the most aggressive and lethal form of breast cancer, characterized by a high infiltration of tumor-associated macrophages and poor prognosis. To identify new biomarkers and to elucidate the molecular mechanisms underlying IBC pathogenesis, we investigated the expression pattern of heparanase (HPSE) and its activator cathepsin L (CTSL). First, we quantitated the and mRNA levels in a cohort of breast cancer patients after curative surgery (20 IBC and 20-non-IBC). We discovered that both and mRNA levels were significantly induced in IBC tissue vis-à-vis non-IBC patients ( <0 .05 and  <0 .001, respectively). According to the molecular subtypes, mRNA levels were significantly higher in carcinoma tissues of triple negative (TN)-IBC as compared to TN-non-IBC ( <0 .05). Mechanistically, we discovered that pharmacological inhibition of HPSE activity resulted in a significant reduction of invasiveness in the IBC SUM149 cell line. Moreover, siRNA-mediated HPSE knockdown significantly downregulated the expression of the metastasis-related gene MMP2 and the cancer stem cell marker CD44. We also found that IBC tumors revealed robust heparanase immune-reactivity and CD163+ M2-type tumor-associated macrophages, with a positive correlation of both markers. Moreover, the secretome of axillary tributaries blood IBC CD14+ monocytes and the cytokine IL-10 significantly upregulated mRNA and protein expression in SUM149 cells. Intriguingly, massively elevated mRNA expression with a trend of positive correlation with mRNA expression was detected in carcinoma tissue of IBC. Our findings highlight a possible role played by CD14+ monocytes and CD163+ M2-type tumor-associated macrophages in regulating expression possibly via IL-10. Overall, we suggest that heparanase, cathepsin L and CD14+ monocytes-derived IL-10 may play an important role in the pathogenesis of IBC and their targeting could have therapeutic implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852308PMC
http://dx.doi.org/10.1016/j.mbplus.2020.100030DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
high infiltration
8
tumor-associated macrophages
8
inflammatory breast
8
mrna levels
8
induction heparanase
4
heparanase il-10
4
il-10 correlates
4
correlates high
4
infiltration cd163+
4

Similar Publications

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Update on the Progress of Musashi-2 in Malignant Tumors.

Front Biosci (Landmark Ed)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China.

Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

Socio-economic inequalities in second primary cancer incidence: A competing risks analysis of women with breast cancer in England between 2000 and 2018.

Int J Cancer

January 2025

Inequalities in Cancer Outcomes Network (ICON) group, Department of Health Services Research and Policy, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK.

We aimed to investigate socio-economic inequalities in second primary cancer (SPC) incidence among breast cancer survivors. Using Data from cancer registries in England, we included all women diagnosed with a first primary breast cancer (PBC) between 2000 and 2018 and aged between 18 and 99 years and followed them up from 6 months after the PBC diagnosis until a SPC event, death, or right censoring, whichever came first. We used flexible parametric survival models adjusting for age and year of PBC diagnosis, ethnicity, PBC tumour stage, comorbidity, and PBC treatments to model the cause-specific hazards of SPC incidence and death according to income deprivation, and then estimated standardised cumulative incidences of SPC by deprivation, taking death as the competing event.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!