Background: Green approach to nanoparticles, including metal oxides Because of an inevitable disadvantage of physical or chemical synthesis routes is attractive nowadays. ZnO nanoparticles play a key role in the medicals and drugs area.
Objectives: In this study, biosynthesis of ZnO nanoparticles with new approach to enhanced the Antimicrobial properties against gram-negative and gram-positive was performed by use of a new type of plant extract, , in an environmentally friendly, cost-effective, simple procedure way.
Materials And Methods: By adding Zn(NO) to methanol extract followed by stirring The resulted solution and final heat treatment in 200 °C the ZnO nanoparticles were synthesized. Disc diffusion method was applied to evaluation the Antimicrobial properties of the extract and nanoparticles towards resistance into (gram-negative) and (gram-positive).
Results: X-ray diffraction pattern (XRD) result showed all of the peaks proportion to ZnO and no other peaks were detected, also demonstrated nanostructure nature with crystallite size about 9 nm. In the Fourier transform infrared spectroscopy (FTIR), there is a band in the 550 cm which is corresponded to ZnO. Also 76 nm average particle size obtained by DLS experiments. Energy-dispersive X-ray spectroscopy (EDS) analysis showed strong peaks for Zn and O, support supposition of ZnO nanoparticles. Field emission scanning electron microscopy (FESEM) images indicated spherical rounded particles with the size of average 30 nm. Antibacterial tests showed effective diameter about 11 and 10 mm for plant extract and also 7 and 5 mm for ZnO nanoparticles against (gram-negative) and (gram-positive) in agar disc diffusion method, respectively.
Conclusions: Biosynthesized ZnO nanoparticles could be a good candidate for antibacterial activity, both against (gram-negative) and (gram-positive) especially for versus .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856401 | PMC |
http://dx.doi.org/10.30498/IJB.2020.151379.2426 | DOI Listing |
Small
January 2025
School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China.
As emerging cutting-edge energy storage technologies, aqueous zinc-ion batteries (AZIBs) have garnered extensive research attention for its high safety, low cost, abundant raw materials, and, eco-friendliness. Nevertheless, the commercialization of AZIBs is mainly limited by insufficient development of cathode materials. Among potential candidates, MXene-based materials stand out as a promising option for their unique combination of hydrophilicity and conductivity.
View Article and Find Full Text PDFLuminescence
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.
View Article and Find Full Text PDFNat Mater
January 2025
Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
A successful therapeutic outcome in the treatment of solid tumours requires efficient intratumoural drug accumulation and retention. Here we demonstrate that zinc gluconate in oral supplements assembles with plasma proteins to form ZnO nanoparticles that selectively accumulate into papillary Caki-2 renal tumours and promote the recruitment of dendritic cells and cytotoxic CD8 T cells to tumour tissues. Renal tumour targeting is mediated by the preferential binding of zinc ions to metallothionein-1X proteins, which are constitutively overexpressed in Caki-2 renal tumour cells.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Science, Gansu Agricultural University, Lanzhou 730000, China.
Soluble starch/zinc oxide nanocomposites could be promising candidates for eco-friendly antimicrobial, food packaging, and a wide range of other utilization. In order to find a new way for the preparation of this kind of nanocomposites, an efficient and energy-saving reaction for the synthesis of soluble starch/zinc oxide nanocomposites has been investigated. The reaction was implemented in a solid state at room temperature without post-reaction calcination.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!