Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Most marine animals have a pelagic larval phase that develops in the coastal or open ocean. The fate of larvae has profound effects on replenishment of marine populations that are critical for human and ecosystem health. Larval ecology is expected to be tightly coupled to oceanic features, but for most taxa we know little about the interactions between larvae and the pelagic environment. Here, we provide evidence that surface slicks, a common coastal convergence feature, provide nursery habitat for diverse marine larvae, including > 100 species of commercially and ecologically important fishes. The vast majority of invertebrate and larval fish taxa sampled had mean densities 2-110 times higher in slicks than in ambient water. Combining in-situ surveys with remote sensing, we estimate that slicks contain 39% of neustonic larval fishes, 26% of surface-dwelling zooplankton (prey), and 75% of floating organic debris (shelter) in our 1000 km study area in Hawai'i. Results indicate late-larval fishes actively select slick habitats to capitalize on concentrations of diverse prey and shelter. By providing these survival advantages, surface slicks enhance larval supply and replenishment of adult populations from coral reef, epipelagic, and deep-water ecosystems. Our findings suggest that slicks play a critically important role in enhancing productivity in tropical marine ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862242 | PMC |
http://dx.doi.org/10.1038/s41598-021-81407-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!