A biocomposite coating comprising chitosan and ZnO deposited on a porous Ti oxide is developed to avoid orthopedic and dental implant-related infections. The coating comprised of an inner layer of nanoporous TiO and the outer layer of the chitosan matrix with ZnO nanoparticles. Microbiological tests show that chitosan coating is effective against Escherichia coli (E. coli), however, its ability to inhibit bacterial adhesion is very limited. A 1.2-fold increase in the antibacterial activity of chitosan/ZnO coating against E. coli was detected as compared to the chitosan coating alone, and the chitosan/ZnO efficiently inhibited biofilm formation. In addition, the chitosan/ZnO coating exhibited improved bioactivity compared to the chitosan coating. The improvement in antibacterial properties and bioactivity of the chitosan/ZnO coating is attributed to the release of Zn ions. The critical force of scratching the chitosan/ZnO coating was approximately twice that of the chitosan coating. The potentiodynamic polarization results confirmed that the corrosion resistance of the implant with ZnO/chitosan/Ti structure was improved. In addition, cytocompatibility evaluation indicated that the chitosan/ZnO coating has good cytocompatibility in MG-63 cells as compared to pure Ti.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.117639DOI Listing

Publication Analysis

Top Keywords

chitosan/zno coating
20
chitosan coating
16
coating
11
compared chitosan
8
chitosan
6
chitosan/zno
6
hybrid zno/chitosan
4
zno/chitosan antimicrobial
4
antimicrobial coatings
4
coatings enhanced
4

Similar Publications

Awareness of microbial infection, hygiene, and personal health has increased in recent years, particularly in light of the pervasive pandemic encountered by the global community. This has prompted the development of antibacterial and superhydrophobic cotton fabric to address the pressing challenge. In this investigation, we report bio-mediated zinc oxide nanoparticles (ZnO NPs) synthesized using leaf extract and zinc acetate.

View Article and Find Full Text PDF

Enhanced surface antimicrobial, biocompatible and mechanical properties of 3D printed titanium alloys by electrophoretic deposition of chitosan/ZnO.

Colloids Surf B Biointerfaces

January 2025

School of Basic Medical Sciences, Mechanical Engineering College, Chengdu University, Chengdu 610106, China. Electronic address:

In this study, to address the susceptibility of 3D-printed titanium implants to bacterial infection, we propose to form a chitosan/ZnO composite coating by electrophoretic deposition to enhance its antimicrobial, biocompatible, and mechanical properties. The surface morphology of the composite coating is relatively flat, showing good hydrophilicity and coating adhesion, and the corrosion current density is significantly lower than that of the untreated titanium alloy. According to the results of the study, the composite coatings containing more than 0.

View Article and Find Full Text PDF

The development of nanomaterials has been speedily established in recent years, yet nanoparticles synthesized by traditional methods suffer unacceptable toxicity and the sustainability of the procedure for synthesizing such nanoparticles is inadequate. Consequently, green biosynthesis, which employs biopolymers, is gaining attraction as an environmentally sound alternative to less sustainable approaches. Chitosan-encapsulated nanoparticles exhibit exceptional antibacterial properties, offering a wide range of uses.

View Article and Find Full Text PDF

This study investigates the creation and analysis of chitosan-zinc oxide (CS-ZnO) nanocomposites, exploring their effectiveness in inhibiting bacteria. Two synthesis approaches, physical and chemical, were utilized. The CS-ZnO nanocomposites demonstrated strong antibacterial properties, especially against Staphylococcus aureus, a Gram-positive bacterium.

View Article and Find Full Text PDF

Preparation and characterization of chitosan/ZnO-Ag composite microcapsules and their applications in solar energy harvesting and electromagnetic interference shielding.

Int J Biol Macromol

April 2024

Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China. Electronic address:

Phase change microcapsules are known for their latent heat storage capability. However, the efficient absorption and utilization of solar energy by these microcapsules remains a significant challenge. In this study, we successfully prepared composite phase change microcapsules containing ZnO-Ag nanospheres, chitosan, and paraffin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!