Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease that affects motoneurons. Mutations in superoxide dismutase 1 (SOD1) have been described as a causative genetic factor for ALS. Mice overexpressing ALS-linked mutant SOD1 develop ALS symptoms accompanied by histopathological alterations and protein aggregation. The protein disulfide isomerase family member ERp57 is one of the main up-regulated proteins in tissue of ALS patients and mutant SOD1 mice, whereas point mutations in ERp57 were described as possible risk factors to develop the disease. ERp57 catalyzes disulfide bond formation and isomerization in the endoplasmic reticulum (ER), constituting a central component of protein quality control mechanisms. However, the actual contribution of ERp57 to ALS pathogenesis remained to be defined. Here, we studied the consequences of overexpressing ERp57 in experimental ALS using mutant SOD1 mice. Double transgenic SOD1/ERp57 animals presented delayed deterioration of electrophysiological activity and maintained muscle innervation compared to single transgenic SOD1 littermates at early-symptomatic stage, along with improved motor performance without affecting survival. The overexpression of ERp57 reduced mutant SOD1 aggregation, but only at disease end-stage, dissociating its role as an anti-aggregation factor from the protection of neuromuscular junctions. Instead, proteomic analysis revealed that the neuroprotective effects of ERp57 overexpression correlated with increased levels of synaptic and actin cytoskeleton proteins in the spinal cord. Taken together, our results suggest that ERp57 operates as a disease modifier at early stages by maintaining motoneuron connectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863244PMC
http://dx.doi.org/10.1186/s40478-020-01116-zDOI Listing

Publication Analysis

Top Keywords

mutant sod1
16
erp57
9
protein disulfide
8
disulfide isomerase
8
experimental als
8
sod1 mice
8
als
7
sod1
6
protein
4
isomerase erp57
4

Similar Publications

Investigating the impact of SOD1 mutations on amyotrophic lateral sclerosis progression and potential drug repurposing through analysis.

J Biomol Struct Dyn

December 2024

Department of Medical Laboratory Technology, Faculty of Medical Applied Science, Northern Border University, Arar, Saudi Arabia.

Superoxide dismutase 1 (SOD1) is a vital enzyme responsible for attenuating oxidative stress through its ability to facilitate the dismutation of the superoxide radical into oxygen and hydrogen peroxide. The progressive loss of motor neurons characterize amyotrophic lateral sclerosis (ALS), a crippling neurodegenerative disease that is caused by mutations in the SOD1 gene. In this study, mutational analysis was performed to study the various mutations, the pathogenicity and stability ΔΔG (binding free energy) of the variant of SOD1.

View Article and Find Full Text PDF

Neurodegenerative disorders are characterized by a progressive decline of specific neuronal populations in the brain and spinal cord, typically containing aggregates of one or more proteins. They can result in behavioral alterations, memory loss and a decline in cognitive and motor abilities. Various pathways and mechanisms have been outlined for the potential treatment of these diseases, where redox regulation is considered as one of the most common druggable targets.

View Article and Find Full Text PDF

Disturbances in metal ion homeostasis associated with amyotrophic lateral sclerosis (ALS) have been described for several years, but the exact mechanism of involvement is not well understood. To elucidate the role of metalation in superoxide dismutase (SOD1) misfolding and aggregation, we comprehensively characterized the structural features (apo/holo forms) of WT-SOD1 and P66R mutant in loop IV. Using computational and experimental methodologies, we assessed the physicochemical properties of these variants and their correlation with protein aggregation at the molecular level.

View Article and Find Full Text PDF

Human VCP mutant ALS/FTD microglia display immune and lysosomal phenotypes independently of GPNMB.

Mol Neurodegener

November 2024

Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.

Article Synopsis
  • Microglia, the brain's immune cells, are vital for neuron health but may worsen conditions like ALS and FTD, and their exact role in these diseases is still unclear.
  • Researchers created specialized cultures of microglia from human stem cells with VCP mutations to study their behavior and effects on nearby nerve cells and supportive cells, using advanced techniques like RNA sequencing and proteomics.
  • The studies revealed that VCP mutant microglia show immune system and lysosomal issues, react differently to inflammation compared to healthy microglia, and can influence motor neurons and astrocytes through secreted factors, even though certain genetic factors didn't fully address their dysfunction.
View Article and Find Full Text PDF

Upregulated miR-10b-5p as a potential miRNA signature in amyotrophic lateral sclerosis patients.

Front Cell Neurosci

November 2024

Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock, Germany.

Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset disease marked by a progressive degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Death in most patients usually occurs within 2-4 years after symptoms onset. Despite promising progress in delineating underlying mechanisms, such as disturbed proteostasis, DNA/RNA metabolism, splicing or proper nucleocytoplasmic shuttling, there are no effective therapies for the vast majority of cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!