Background: Because of its tractability and straightforward cultivation, the magnetic bacterium Magnetospirillum gryphiswaldense has emerged as a model for the analysis of magnetosome biosynthesis and bioproduction. However, its future use as platform for synthetic biology and biotechnology will require methods for large-scale genome editing and streamlining.

Results: We established an approach for combinatory genome reduction and generated a library of strains in which up to 16 regions including large gene clusters, mobile genetic elements and phage-related genes were sequentially removed, equivalent to ~ 227.6 kb and nearly 5.5% of the genome. Finally, the fragmented genomic magnetosome island was replaced by a compact cassette comprising all key magnetosome biosynthetic gene clusters. The prospective 'chassis' revealed wild type-like cell growth and magnetosome biosynthesis under optimal conditions, as well as slightly improved resilience and increased genetic stability.

Conclusion: We provide first proof-of-principle for the feasibility of multiple genome reduction and large-scale engineering of magnetotactic bacteria. The library of deletions will be valuable for turning M. gryphiswaldense into a microbial cell factory for synthetic biology and production of magnetic nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860042PMC
http://dx.doi.org/10.1186/s12934-021-01517-2DOI Listing

Publication Analysis

Top Keywords

magnetosome biosynthesis
12
magnetospirillum gryphiswaldense
8
synthetic biology
8
genome reduction
8
gene clusters
8
magnetosome
5
genome
5
'chassis' bacterial
4
bacterial magnetosome
4
biosynthesis genome
4

Similar Publications

Magnetotactic bacteria affiliated with diverse Pseudomonadota families biomineralize intracellular Ca-carbonate.

ISME J

January 2025

Aix-Marseille Université, CNRS, CEA, BIAM, UMR7265 Institut de Biosciences and Biotechnologies d'Aix-Marseille, Cadarache research centre, F-13115 Saint-Paul-lez-Durance, France.

Intracellular calcium carbonate formation has long been associated with a single genus of giant Gammaproteobacteria, Achromatium. However, this biomineralization has recently received increasing attention after being observed in photosynthetic Cyanobacteriota and in two families of magnetotactic bacteria affiliated with the Alphaproteobacteria. In the latter group, bacteria form not only intracellular amorphous calcium carbonates into large inclusions that are refringent under the light microscope, but also intracellular ferrimagnetic crystals into organelles called magnetosomes.

View Article and Find Full Text PDF

The origins of light-independent magnetoreception in humans.

Front Hum Neurosci

November 2024

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

Article Synopsis
  • Earth's abundance of iron has been essential for the development of life, influencing biochemical processes and leading to the emergence of early life forms near hydrothermal vents.
  • Iron also plays a role in the evolution of organisms like magnetotactic bacteria, which can detect the Earth's geomagnetic field, showing adaptations beyond humans' conventional senses.
  • Research on species such as zebrafish and pigeons indicates that various life forms have specialized mechanisms for geomagnetic sensing, hinting at complex interactions in the brain related to magnetic fields and their implications for human magnetoreception.
View Article and Find Full Text PDF

Organelle-specific protein translocation systems are essential for organelle biogenesis and maintenance in eukaryotes but thought to be absent from prokaryotic organelles. Here, we demonstrate that MamF-like proteins are crucial for the formation and functionality of bacterial magnetosome organelles. Deletion of mamF-like genes in the Alphaproteobacterium Magnetospirillum gryphiswaldense results in severe defects in organelle positioning, biomineralization, and magnetic navigation.

View Article and Find Full Text PDF

Magnetochrome-catalyzed oxidation of ferrous iron by MamP enables magnetite crystal growth in the magnetotactic bacterium AMB-1.

Proc Natl Acad Sci U S A

December 2024

Commissariat à l'Energie Atomique (CEA), CNRS, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, Saint-Paul-lez-Durance 13115, France.

Magnetotactic bacteria have evolved the remarkable capacity to biomineralize chains of magnetite [Fe(II)Fe(III)O] nanoparticles that align along the geomagnetic field and optimize their navigation in the environment. Mechanisms enabling magnetite formation require the complex action of numerous proteins for iron acquisition, sequestration in dedicated magnetosome organelles, and precipitation into magnetite. The MamP protein contains c-type cytochromes called magnetochrome domains that are found exclusively in magnetotactic bacteria.

View Article and Find Full Text PDF

Biomineralization in magnetotactic bacteria: From diversity to molecular discovery-based applications.

Cell Rep

December 2024

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Article Synopsis
  • The text discusses the unique process of magnetosome formation in magnetotactic bacteria (MTB), showcasing it as a significant microbial-controlled biomineralization example.
  • It emphasizes the importance of studying MTB to comprehend magnetoreception, bacterial organelles, and to explore potential applications in biotechnology and medicine.
  • The review highlights recent discoveries about MTB diversity and provides insights into magnetosome biosynthesis, along with the increasing biomedical and biotechnological uses of these microorganisms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!