Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Impingement syndrome is currently estimated to represent 60% of all shoulder pain disorders. Capacitive-Resistive electric transfer therapy is aimed to provoke temperature and current flow changes in superficial and deep tissues. This in vitro study has evaluated the variation of temperature and current flow in the shoulder tissues during two different areas of application of the movable capacitive-resistive electric transfer electrode.
Methods: A cross-sectional study designed, five fresh cryopreserved cadavers (10 shoulders) were included in this study. Four interventions (capacitive and resistive modes; low- and high-power) were performed for 5 min each by a diathermy "T-Plus" device in two shoulder regions: postero-superior and antero-lateral. Supraspinatus tendon, glenohumeral capsule and superficial temperatures were recorded at 1-min intervals and 5 min after treatment.
Results: A statistically significant difference was found only for the superficial area and time interaction, with high power-resistive application at the postero-superior shoulder area (P< 0.035). All the applications showed a 5 min after treatment temperature increase compared with the basal data, in all the application points. Superficial temperature in the high power-resistive application showed the greatest percent increase (42.93% ± 22.58), followed by the temperature in the tendon area with the same high power-resistive application (22.97% ± 14.70). The high power-resistive application showed the greatest percent of temperature increase in the applications, reaching 65.9% ± 22.96 at 5-min at the superficial level, and 32% ± 24.25 at 4-min at the level of the supraspinatus tendon. At the capsule level, high power-resistive was also the application that showed the greatest percent of increase, with 21.52% ± 16.16. The application with the lowest percent of temperature increase was the low power-capacitive, with a mean value of 4.86% at supraspinatus tendon level and 7.47% at capsular level.
Conclusion: The shoulder postero-superior or antero-lateral areas of application of capacitive-resistive electric transfer did not cause statistically significant differences in the temperature changes in either supraspinatus tendon or glenohumeral capsule tissues in cadaveric samples. The high power-resistive application in the postero-superior area significantly increased superficial temperature compared with the same application in the antero-lateral position area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860630 | PMC |
http://dx.doi.org/10.1186/s12891-020-03918-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!