A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Numerical Simulation of a Core-Shell Polymer Strand in Material Extrusion Additive Manufacturing. | LitMetric

Material extrusion additive manufacturing (ME-AM) techniques have been recently introduced for core-shell polymer manufacturing. Using ME-AM for core-shell manufacturing offers improved mechanical properties and dimensional accuracy over conventional 3D-printed polymer. Operating parameters play an important role in forming the overall quality of the 3D-printed manufactured products. Here we use numerical simulations within the framework of computation fluid dynamics (CFD) to identify the best combination of operating parameters for the 3D printing of a core-shell polymer strand. The objectives of these CFD simulations are to find strands with an ultimate volume fraction of core polymer. At the same time, complete encapsulations are obtained for the core polymer inside the shell one. In this model, the deposition flow is controlled by three dimensionless parameters: (i) the diameter ratio of core material to the nozzle, d/D; (ii) the normalised gap between the extruder and the build plate, t/D; (iii) the velocity ratio of the moving build plate to the average velocity inside the nozzle, V/U. Numerical results of the deposited strands' cross-sections demonstrate the effects of controlling parameters on the encapsulation of the core material inside the shell and the shape and size of the strand. Overall we find that the best operating parameters are a diameter ratio of d/D=0.7, a normalised gap of t/D=1, and a velocity ratio of V/U=1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867314PMC
http://dx.doi.org/10.3390/polym13030476DOI Listing

Publication Analysis

Top Keywords

core-shell polymer
12
operating parameters
12
polymer strand
8
material extrusion
8
extrusion additive
8
additive manufacturing
8
manufacturing me-am
8
core polymer
8
inside shell
8
parameters diameter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!