Machine Vision for As-Built Modeling of Complex Draped Composite Structures.

Materials (Basel)

Institute of Polymer Engineering, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Klosterzelgstrasse 2, 5210 Windisch, Switzerland.

Published: February 2021

The transition in the use of fiber composite structures from special applications to application in the mass market is accompanied by high demands in quality assurance. The consequential costs of unclear process design, unknown fiber orientations, and uncertainty regarding the effects of any fiber angle deviations can lead to market considerations (higher costs/time for development) in mass production that advise against the use of fiber composites, despite their superiority compared with conservative materials. Active monitoring of the deposited reinforcement layers and an evaluation of the real fiber orientation can form the basis of a robust industrial use of fiber composites by a first-time right production that is able to reduce the process variability. This paper describes the application of an image analysis system to provide both geometric topology and local reinforcement fiber orientation feedback to a finite-element (FE) model. The application during an industrial composite part production is described, and the possibilities of using it for the improvement of the lightweight character, the reduction of rejects, and the realization of a quality management system are shown. The determined component data are made directly available for use in numerical simulations and, thus, they serve as a non-destructive evaluation of the components under real conditions in which all production-dependent influences that affect the fiber orientation are incorporated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867240PMC
http://dx.doi.org/10.3390/ma14030682DOI Listing

Publication Analysis

Top Keywords

fiber orientation
12
composite structures
8
fiber
8
fiber composites
8
machine vision
4
vision as-built
4
as-built modeling
4
modeling complex
4
complex draped
4
draped composite
4

Similar Publications

Unlabelled: Accurate localization of white matter pathways using diffusion MRI is critical to investigating brain connectivity, but the accuracy of current methods is not thoroughly understood. A fruitful approach to validating accuracy is to consider microscopy data that have been co-registered with MRI of post mortem samples. In this setting, structure tensor analysis is a standard approach to computing local orientations for validation.

View Article and Find Full Text PDF

3D printing of biological tooth with multiple ordered hierarchical structures.

Mater Today Bio

February 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.

Natural teeth fulfill functional demands by their heterogeneity. The composition and hydroxyapatite (HAp) nanostructured orientation of enamel differ from those of dentin. However, mimicking analogous materials still exhibit a significant challenge.

View Article and Find Full Text PDF

Synthesis of UiO-66-NH@PSF Hollow Fiber Membrane with Enhanced Simultaneous Adsorption of Pb and Phosphate for Hydrogen Peroxide Purification.

ACS Appl Mater Interfaces

January 2025

Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China.

Electronic grade hydrogen peroxide plays a crucial role in the fabrication of large-scale integrated circuits. However, hydrogen peroxide prepared by the anthraquinone method contains impurities such as lead ions (Pb) and phosphate, which can seriously affect the yield of the circuit. Traditional adsorbent materials have difficulty in solving the problem of simultaneous adsorption of trace anions and cations in hydrogen peroxide due to the single adsorption site and poor adsorption kinetics.

View Article and Find Full Text PDF

Obstructive sleep apnea and structural and functional brain alterations: a brain-wide investigation from clinical association to genetic causality.

BMC Med

January 2025

Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China.

Background: Obstructive sleep apnea (OSA) is linked to brain alterations, but the specific regions affected and the causal associations between these changes remain unclear.

Methods: We studied 20 pairs of age-, sex-, BMI-, and education- matched OSA patients and healthy controls using multimodal magnetic resonance imaging (MRI) from August 2019 to February 2020. Additionally, large-scale Mendelian randomization analyses were performed using genome-wide association study (GWAS) data on OSA and 3935 brain imaging-derived phenotypes (IDPs), assessed in up to 33,224 individuals between December 2023 and March 2024, to explore potential genetic causality between OSA and alterations in whole brain structure and function.

View Article and Find Full Text PDF

High-Performance Mechano-Sensitive Piezoelectric Nanogenerator from Post-Treated Nylon-11,11 Textiles for Energy Harvesting and Human Motion Monitoring.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.

Piezoelectric polymer textiles offer distinct advantages in the fabrication of wearable nanogenerators (NGs). One effective strategy to enhance the output capacity of NGs is to modulate the piezoelectric performance of the textiles. This paper focuses on further improving the piezoelectric properties of nylon-11,11 textiles through post-drawing and annealing treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!