Many viruses disrupt host gene expression by degrading host mRNAs and/or manipulating translation activities to create a cellular environment favorable for viral replication. Often, virus-induced suppression of host gene expression, including those involved in antiviral responses, contributes to viral pathogenicity. Accordingly, clarifying the mechanisms of virus-induced disruption of host gene expression is important for understanding virus-host cell interactions and virus pathogenesis. Three highly pathogenic human coronaviruses (CoVs), including severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2, have emerged in the past two decades. All of them encode nonstructural protein 1 (nsp1) in their genomes. Nsp1 of SARS-CoV and MERS-CoV exhibit common biological functions for inducing endonucleolytic cleavage of host mRNAs and inhibition of host translation, while viral mRNAs evade the nsp1-induced mRNA cleavage. SARS-CoV nsp1 is a major pathogenic determinant for this virus, supporting the notion that a viral protein that suppresses host gene expression can be a virulence factor, and further suggesting the possibility that SARS-CoV-2 nsp1, which has high amino acid identity with SARS-CoV nsp1, may serve as a major virulence factor. This review summarizes the gene expression suppression functions of nsp1 of CoVs, with a primary focus on SARS-CoV nsp1 and MERS-CoV nsp1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912902 | PMC |
http://dx.doi.org/10.3390/cells10020300 | DOI Listing |
Brief Bioinform
November 2024
Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States.
Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.
View Article and Find Full Text PDFClin Cancer Res
January 2025
Stanford University, Palo Alto, CA, United States.
Purpose: After failing primary and secondary hormonal therapy, castration-resistant and neuroendocrine prostate cancer metastatic to the bone is invariably lethal, although treatment with docetaxel and carboplatin can modestly improve survival. Therefore, agents targeting biologically relevant pathways in PCa and potentially synergizing with docetaxel and carboplatin in inhibiting bone metastasis growth are urgently needed.
Experimental Design: Phosphorylated (activated) AXL expression in human prostate cancer bone metastases was assessed by immunohistochemical staining.
STAR Protoc
January 2025
Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA. Electronic address:
Spatial transcriptomics enhances our understanding of cellular organization by mapping gene expression data to precise tissue locations. Here, we present a protocol for using weighted ensemble method for spatial transcriptomics (WEST), which uses ensemble techniques to boost the robustness and accuracy of existing algorithms. We describe steps for preprocessing data, obtaining embeddings from individual algorithms, and ensemble integrating all embeddings as a similarity matrix.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
Sci Transl Med
January 2025
Graduate Program in Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue (M-860), Miami, FL 33136, USA.
Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!