Recent Advances in Aptamer Sensors.

Sensors (Basel)

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.

Published: February 2021

Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors. In this review, recent advances in aptasensors as powerful biosensor probes that could be used in different fields, including environmental monitoring, clinical diagnosis, and drug monitoring, are described. Advances in aptamer-based colorimetric, fluorometric, and electrochemical aptasensing with their advantages and disadvantages are summarized and critically discussed. Additionally, future prospects are pointed out to facilitate the development of aptasensor technology for different targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867169PMC
http://dx.doi.org/10.3390/s21030979DOI Listing

Publication Analysis

Top Keywords

high binding
8
binding affinity
8
colorimetric fluorometric
8
fluorometric electrochemical
8
advances aptamer
4
aptamer sensors
4
sensors aptamers
4
aptamers attracted
4
attracted attention
4
attention biosensing
4

Similar Publications

Biotin[6]uril, a chiral, water-soluble and anion binding macrocycle, is formed via dynamic covalent chemistry. In this study, we present a scalable and high-yielding synthesis of biotin[6]uril via a mechanochemical solid-state approach. The optimized protocol involves mechanical grinding of solid D-biotin with paraformaldehyde in the presence of 0.

View Article and Find Full Text PDF

Type III protein secretion systems (T3SSs) function as multiprotein devices that span the envelope of Gram-negative bacteria using the peptidoglycan (PG) layer as scaffold. This spatial arrangement explains why modifications in PG structure can alter T3SS activity. In incorporation of non-canonical D-amino acids in the PG was shown to decrease the activity of the T3SS encoded by the pathogenicity island-1 (SPI-1) without affecting other T3SS, like the flagellum apparatus.

View Article and Find Full Text PDF

Unlabelled: RamA is an intrinsic regulator in , belonging to the AraC family of transcription factors and conferring a multidrug resistance phenotype, especially for tetracycline-class antibiotics. The ATP-binding cassette transporters MlaFEDCB in bacteria play essential roles in functions essential for cell survival and intrinsic resistance to many antibiotics. We found deletion of resulted in a fivefold decrease in the transcriptional levels of the operon.

View Article and Find Full Text PDF

Herein, we propose a new GaN/MoSiP van der Waals (vdWs) heterostructure constructed by vertically stacking GaN and MoSiP monolayers. Its electronic, optical, and photocatalytic properties are explored DFT++BSE calculations. The calculated binding energy and phonon spectrum demonstrated the material's high stabilities.

View Article and Find Full Text PDF

As precision medicine increasingly reveals the biological diversity among individuals, the demand for higher-throughput screening techniques, particularly suspension array technologies capable of more multiplexing from smaller samples in a single run, is intensifying. However, advancements in the multiplexing capability of current suspension platforms have lagged with limited alleviation, necessitating breakthroughs for innovative solutions that enable larger-scale measurements. Here, we introduce such a breakthrough with a novel mass-cytometric barcode engineering by metal nanoparticle-based "Lego Brick"-like self-assembly for high-throughput barcode design and capacity amplification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!