Transformation of Salicylic Acid and Its Distribution in Tea Plants () at the Tissue and Subcellular Levels.

Plants (Basel)

Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China.

Published: February 2021

Salicylic acid (SA) is a well-known immune-related hormone that has been well studied in model plants. However, less attention has been paid to the presence of SA and its derivatives in economic plants, such as tea plants (). This study showed that tea plants were rich in SA and responded differently to different pathogens. Feeding experiments in tea tissues further confirmed the transformation of SA into salicylic acid 2--β-glucoside (SAG) and methyl salicylate. Nonaqueous fractionation techniques confirmed that SA and SAG were mostly distributed in the cytosol of tea leaves, consistent with distributions in other plant species. Furthermore, the stem epidermis contained more SA than the stem core both in cv. "Jinxuan" (small-leaf species) and "Yinghong No. 9" (large-leaf species). Compared with cv. "Yinghong No. 9", cv. "Jinxuan" contained more SAG in the stem epidermis, which might explain its lower incidence rate of wilt disease. This information will improve understanding of SA occurrence in tea plants and provide a basis for investigating the relationship between SA and disease resistance in tea plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912924PMC
http://dx.doi.org/10.3390/plants10020282DOI Listing

Publication Analysis

Top Keywords

tea plants
20
salicylic acid
12
transformation salicylic
8
stem epidermis
8
tea
7
plants
7
acid distribution
4
distribution tea
4
plants tissue
4
tissue subcellular
4

Similar Publications

Exploration of the effects of geographical regions on the volatile and non-volatile metabolites of black tea utilizing multiple intelligent sensory technologies and untargeted metabolomics analysis.

Food Chem X

October 2024

Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.

Geographical regions profoundly influence the flavor characteristics of Congou black tea (CBT). In this study, 35 CBT samples from 7 geographical regions were comprehensively characterized by integrated multiple intelligent sensory technologies and untargeted metabolomics analysis. A satisfactory discrimination was achieved through the fusion of multiple intelligent sensory technologies (RY = 0.

View Article and Find Full Text PDF

Tea plant can enrich a large amount of fluorine (F) in the cell wall of its mature leaves, thus posing the risk of excessive intake of F for tea consumers. This study investigated the effect of foliar calcium (Ca) application (0.05-1 mM) on F accumulation in tea plant leaves by analyzing the association of F with cell wall materials, pectin methylesterification structure, and cell wall genes.

View Article and Find Full Text PDF

Royle ex Wight, commonly known as "Baishouwu," has been traditionally used in China for its medicinal and dietary benefits. Despite its long history of use, the potential therapeutic effects of in the treatment of colitis have not been fully investigated. This study aims to evaluate the effects of the water extract of root on colitis and elucidate its potential mechanisms of action.

View Article and Find Full Text PDF

Background: Medicinal plants are widely used for healthcare needs, including oral health. In the Philippines, garlic, guava, tsaang-gubat, and hierba buena, although primarily recognized as plants used for the treatment of systemic diseases, are indicated as analgesics for dental pain, treatment of gingival inflammation, and oral health maintenance. Despite studies focusing on the effectiveness of these plants for oral health, there is little to no research on the populace's knowledge, attitude, and practices on these medicinal plants.

View Article and Find Full Text PDF

The mycotoxin tenuazonic acid (TeA) inhibits photosynthesis and is expected to be developed as a bioherbicide to control Ageratina adenophora that is one of the most serious invasive alien plants in China. New leaves sprouting from A. adenophora at low temperatures (LT) in early spring are less sensitive to TeA compared to those growing in summer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!