Conformational Preferences of Cyclopentane-Based Oligo-δ-peptides in the Gas Phase and in Solution.

Chempluschem

Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.

Published: April 2021

The conformational preferences of oligomers of δ-amino acid (δAc a) with a cyclopentyl constraint in the C -C bond of the backbone were investigated by using DFT methods in the gas phase and in solution. The folded structures with C H-bonded pseudocycles were most preferred for dimer and tetramer of δAc a residues both in chloroform and water. However, for the hexameric Ac-(δAc a) -NHMe, the mixed H helical structure was found to be most preferred in chloroform (populated at 68 %), whereas the H helical structure was the most dominant conformation in water (populated at 60 %). The stability of the former was ascribed to the intrinsic conformational energy, whereas the solvation free energy was crucial to stabilize the latter. Pyrrolidine-substituted analogues of the hexameric Ac-(δAc a) -NHMe, with adjacent amine diads that are almost exactly one turn apart with two nitrogen atoms separated by ca. 5.5 Å, adopted helical structures. They are potential catalysts in nonpolar and polar solvents as they have similar structures to a helical 1 : 2 α:β-heptapeptide that exhibited good catalytic performance in the crossed aldol condensation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202000807DOI Listing

Publication Analysis

Top Keywords

conformational preferences
8
gas phase
8
phase solution
8
hexameric ac-δac
8
ac-δac -nhme
8
helical structure
8
preferences cyclopentane-based
4
cyclopentane-based oligo-δ-peptides
4
oligo-δ-peptides gas
4
solution conformational
4

Similar Publications

Attributes novel drug candidate: Constitutive GPCR signal bias mediated by purinergic receptors.

Pharmacol Ther

January 2025

School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.

G protein-coupled receptors (GPCRs) can transmit signals via G protein-dependent or independent pathways due to the conformational changes of receptors and ligands, which is called biased signaling. This concept posits that ligands can selectively activate a specific signaling pathway after receptor activation, facilitating downstream signaling along a preferred pathway. Biased agonism enables the development of ligands that prioritize therapeutic signaling pathways while mitigating on-target undesired effects.

View Article and Find Full Text PDF

Haplotyped-resolved phased assemblies aim to capture the full allelic diversity in heterozygous and polyploid species to enable accurate genetic analyses. However, building non-collapsed references still presents a challenge. Here, we used long-range interaction Hi-C reads (high-throughput chromatin conformation capture) and HiFi PacBio reads to assemble the genome of the apomictic cultivar Basilisks from Urochloa decumbens (2n = 4x = 36), an outcrossed tetraploid Paniceae grass widely cropped to feed livestock in the tropics.

View Article and Find Full Text PDF

Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting.

View Article and Find Full Text PDF

Insights into the Planarization of Benzo-Thianthrene Rings: Relevance of Electronic and Steric Effects with Resulting Aromatic Properties.

J Phys Chem A

January 2025

Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile.

Covalent-organic frameworks (COFs) are useful architectures for two- (2D) and three-dimensional (3D) active materials. Recently, the characterization of the nonplanar benzo[5,6][1,4]dithiino[2,3-]thianthrene-6,13-dicarbonitrile (bTEpCN), as a prototypical section of 2D COFs, enables further understanding of the properties on such extended networks. Upon adsorption on the Au(111) surface, planarization of bTEpCN is achieved.

View Article and Find Full Text PDF

Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!