Hard x-ray methods for studying the structure of amorphous thin films and bulk glassy oxides.

J Phys Condens Matter

X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, United States of America.

Published: April 2021

High-energy photon diffraction minimizes many of the corrections associated with laboratory x-ray diffractometers, and enables structure factor measurements to be made over a wide range of momentum transfers. The method edges us closer toward an ideal experiment, in which coordination numbers can be extracted without knowledge of the sample density. Three case studies are presented that demonstrate new hard x-ray methods for studying the structure of glassy and amorphous materials. First, the methodology and analysis of high-energy grazing incidence on thin films is discussed for the case of amorphous InO. The connectivity of irregular InOpolyhedra are shown to exist in face-, edge- and corner-shared configurations in the approximate ratio of 1:2:3. Secondly, the technique of high-energy small and wide angle scattering has been carried out on laser heated and aerodynamically levitated samples of silica-rich barium silicate (20BaO:80SiO), from the single phase melt at 1500C to the phase separated glass at room temperature. Based on Ba-O coordination numbers of 6 to 7, it is argued that the although the potential of Ba is ionic, it is weak enough to cause the liquid-liquid immiscibility to become metastable. Lastly, high-energy small and wide angle scattering has also been applied to high water content (up to 12 wt.%) samples of hydrous SiOglass quenched from 1500C at 4 GPa. An increase of Si-Ocorrelations at 4.3 Å is found to be consistent with an increase in the population of three-membered SiOrings at the expense of larger rings.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/abe352DOI Listing

Publication Analysis

Top Keywords

hard x-ray
8
x-ray methods
8
methods studying
8
studying structure
8
thin films
8
coordination numbers
8
high-energy small
8
small wide
8
wide angle
8
angle scattering
8

Similar Publications

Characterization of the effect of low-concentration sodium selenite on the microstructure and quality of yeast-leavened steamed bread using X-ray computed tomography.

Food Chem

December 2024

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of life and health sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China.

Dough fermentation is an effective method for selenium conversion. This study investigated the effects of low NaSeO concentrations on the morphology, texture, fermentation properties, Se species, Se bioaccessibility, and antioxidant capacity of two types of yeast-leaved steamed bread. The results indicated that NaSeO did not significantly affect the specific volume; but it did result in increased hardness.

View Article and Find Full Text PDF

Correlation between ultrasonography and elastography parameters and molecular subtypes of breast cancer in young women.

Ann Med

December 2025

Department of Ultrasonographl, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi Province, China.

Objective: To explore the differences of conventional ultrasound characteristics, elastic imaging parameters and clinicopathological characteristics of distinct molecular subtypes of breast cancer in young women, and to identify imaging parameters that exhibited significant associations with each molecular subtype.

Methods: We performed a retrospective analysis encompassing 310 young women with breast cancer. Observations were made regarding the ultrasonography and elastography characteristics of the identified breast lesions.

View Article and Find Full Text PDF

With the applications of in situ X-ray diffraction (XRD), electrical - measurement, and ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES), the characteristics of the topotactic phase transition of LaCoO (LCO) thin films are examined. XRD measurements show clear evidence of structural phase transition (SPT) of the LCO thin films from the perovskite (PV) LaCoO to the brownmillerite (BM) LaCoO phases through the intermediate LaCoO phase at a temperature of 350 °C under high-vacuum conditions, ∼10 mbar. The reverse SPT from BM to PV phases is also found under ambient pressure (>100 mbar) of air near 100 °C.

View Article and Find Full Text PDF

Background And Aim: Osteoid osteoma (Oo) and osteoblastoma (Ob) are rare primary bone tumors with a higher prevalence in the second decade of life. Treatment can be conservative, but in cases of spinal location, resective surgery is of great importance but may be challenging.

Material And Methods: We report four pediatric cases of Oo and Ob managed in our unit, with different locations at the level of the cervical spine.

View Article and Find Full Text PDF

The Impact of Laser Irradiation on Thin ZrN Films Deposited by Pulsed DC Magnetron Sputtering.

Nanomaterials (Basel)

December 2024

School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Transition metal nitrides have extensive applications, including magnetic storage devices, hardware resistance coatings, and low-temperature fuel cells. This study investigated the structural, electrical, and mechanical properties of thin zirconium nitride (ZrN) films by examining the effects of laser irradiation times. Thin ZrN films were deposited on glass substrates using pulsed DC magnetron sputtering and irradiated with a diode laser for 6 and 10 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!