Peptidoglycan (PG) is the major structural polymer of the bacterial cell wall. The PG layer of gram-positive bacterial pathogens such as Staphylococcus aureus (S. aureus) is permeated with anionic glycopolymers known as wall teichoic acids (WTAs) and lipoteichoic acids (LTAs). In S. aureus, the WTA backbone typically consists of repeating ribitol-5-phosphate units, which are modified by enzymes that introduce glycosylation as well as amino acids at different locations. These modifications are key determinants of phage adhesion, bacterial biofilm formation and virulence of S. aureus. In this review, we examine differences in WTA structures in gram-positive bacteria, focusing in particular on three enzymes, TarM, TarS, and TarP that glycosylate the WTA of S. aureus at different locations. Infections with S. aureus pose an increasing threat to human health, particularly through the emergence of multidrug-resistant strains. Recently obtained structural information on TarM, TarS and TarP has helped to better understand the strategies used by S. aureus to establish resistance and to evade host defense mechanisms. Moreover, structures of complexes with poly-RboP and its analogs can serve as a platform for the development of new inhibitors that could form a basis for the development of antibiotic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.sbi.2021.01.003 | DOI Listing |
Plant Cell Environ
January 2025
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil.
Moniliophthora perniciosa is the causal agent of the witches' broom disease of cacao (Theobroma cacao), and it can infect the tomato (Solanum lycopersicum) 'Micro-Tom' (MT) cultivar. Typical symptoms of infection are stem swelling and axillary shoot outgrowth, whereas reduction in root biomass is another side effect. Using infected MT, we investigated whether impaired root growth derives from hormonal imbalance or sink competition.
View Article and Find Full Text PDFBiomacromolecules
January 2025
BioComposites Centre, Bangor University, Bangor LL57 2UW, U.K.
Wood modification using low molecular weight thermosetting resins improves the biological durability and dimensional stability of wood while avoiding increasingly regulated biocides. During the modification process, resin monomers diffuse from the cell lumen to the cell wall, occupying micropore spaces before curing at 150 °C. This study investigated the mechanism of cell wall diffusion at multiple scales, comparing two test groups where diffusion was either facilitated or restricted.
View Article and Find Full Text PDFCell Res
January 2025
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.
Hydrogen peroxide (HO) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense HO in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses HO to confer resistance to multiple diseases caused by fungi or bacteria.
View Article and Find Full Text PDFAnn Hematol
January 2025
Third Department of Internal Medicine, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
Severe acute graft-versus-host disease (GVHD) can occur during allogeneic hematopoietic stem cell transplantation (allo-HSCT), causing considerable morbidity and mortality. Although several biomarkers have been reported for predicting acute GVHD, they are often difficult to measure in routine clinical practice. Recently, three-dimensional computed tomography (3D-CT) has been used to quantify the detailed bronchial structure, which might correlate with acute GVHD.
View Article and Find Full Text PDFSci Rep
January 2025
Cardiology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China.
Atherosclerosis (AS) is a chronic vascular disease characterized by inflammation of the arterial wall and the formation of cholesterol plaques. Hashimoto's thyroiditis (HT) is an autoimmune disorder marked by chronic inflammation and destruction of thyroid tissue. Although previous studies have identified common risk factors between AS and HT, the specific etiology and pathogenic mechanisms underlying these associations remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!