This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.125157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!