DNA polymerase beta (POLβ), well known for its role in nuclear DNA base excision repair (BER), has been shown to be present in the mitochondria of several different cell types. Here we present a side-by-side comparison of BER activities of POLβ and POLγ, the mitochondrial replicative polymerase, previously thought to be the only mitochondrial polymerase. We find that POLβ is significantly more proficient at single-nucleotide gap filling, both in substrates with ends that require polymerase processing, and those that do not. We also show that POLβ has a helicase-independent functional interaction with the mitochondrial helicase, TWINKLE. This interaction stimulates strand-displacement synthesis, but not single-nucleotide gap filling. Importantly, we find that purified mitochondrial extracts from cells lacking POLβ are severely deficient in processing BER intermediates, suggesting that mitochondrially localized DNA POLβ may be critical for cells with high energetic demands that produce greater levels of oxidative stress and therefore depend upon efficient BER for mitochondrial health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887074PMC
http://dx.doi.org/10.1016/j.dnarep.2021.103050DOI Listing

Publication Analysis

Top Keywords

dna polymerase
12
base excision
8
excision repair
8
single-nucleotide gap
8
gap filling
8
mitochondrial
6
polβ
6
dna
5
polymerase
5
polymerase outperforms
4

Similar Publications

Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.

Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.

View Article and Find Full Text PDF

Background: Human herpesvirus-8 (HHV8) can present with cutaneous or extracutaneous manifestations. While violaceous skin lesions characterize cutaneous Kaposi sarcoma, extracutaneous HHV8 is challenging to diagnose due to nonspecific symptoms.

Objectives: We evaluated the role of microbial cell-free DNA next-generation sequencing (mcfDNA NGS) in diagnosing HHV8-related illness.

View Article and Find Full Text PDF

Novel D-Ribofuranosyl Tetrazoles: Synthesis, Characterization, In Vitro Antimicrobial Activity, and Computational Studies.

ACS Omega

January 2025

Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.

The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

The presence of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in the superbug presents a unique opportunity to precisely target and edit bacterial genomes to modify their drug resistance. The objective was to detect the prevalence of CRISPR in extensively and pan-drug-resistant and to determine the utility of whole-genome sequencing (WGS) for the analysis of the entire genome for such strains. The antimicrobial susceptibilities of one hundred isolates were assessed using the antibiotic susceptibility test (AST) card of the VITEK system.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!