The fungal community and soil geochemical, physical and biological parameters were analyzed, respectively, in bauxite residues (BRs) treated with organic matter and vermiculite/fly ash by phylogenetic analysis of ITS-18 S rRNA, community level physiological profiles (CLPP) and so on. The results indicated that after amendment of the BR, microbial utilization of carbohydrates and their enzyme activities were significantly increased, but fungal compositions at the phylum level were similar and dominated by the phylum of Ascomycota (82.05-98.96%, RA: relative abundance) after one year of incubation. The fungal taxa in the amended BR treatments, however, show significantly less alpha and beta diversity compared with the reference soils, although they still harbor a substantial novel taxon. The combined amendment of organic matter (OM) and vermiculite/fly ash significantly increases the fungal taxa at the genus and species level compared with solely OM amendment. The results of the following canonical correspondence analysis found that, over 90% variation of the fungal community could be explained by pH, OM and mean weight diameter (MWD) of aggregates; but the biological indicators, including urease (UR), dehydrogenase (DHA) and the value of average well color development (AWCD) could explain only 50% variation of the fungal flora in BRs. This paper indicated that resilience of fungal community in BRs was positively correlated with the BRs' improvement in fertility as well as biogeochemical properties, but alkalinity must be firstly decreased to the target level of BRs' rehabilitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.112052 | DOI Listing |
Sci Total Environ
January 2025
Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain.
There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:
The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.
View Article and Find Full Text PDFSci Total Environ
January 2025
China National Environmental Monitoring Centre, Beijing 100012, China.
The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China. Electronic address:
The increasing frequency of cyanobacterial blooms, particularly those induced by Microcystis aeruginosa (M. aeruginosa), poses severe economic, ecological and health challenges due to the production of microcystins (MCs). Environmental parameters such as light and nutrient availability influence MCs production, while the role of dissolved organic matter (DOM) photochemical processes in regulating these remains unclear.
View Article and Find Full Text PDFSmall
January 2025
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
Conductive metal-organic frameworks (MOFs) are crystalline, intrinsically porous materials that combine remarkable electrical conductivity with exceptional structural and chemical versatility. This rare combination makes these materials highly suitable for a wide range of energy-related applications. However, the electrical conductivity in MOF-based devices is often limited by the presence of different types of structural disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!