During the occurring of cutaneous trauma, increasing oxidative stress response in wound site retards the progress of proliferation phase, impeding sequent efficient wound repair. At the same time, high-quality healing also requires adequate new blood vessels in order to furnish the wound site with a nutrient and oxygen-sufficient environment. Here we synthesized a novel hyaluronic acid (HA) material modified with a peroxidation inhibitor 2,2,6,6-tetramethylpiperidinyloxy (ATEMPO) for prevention of excessive reactive oxygen species (ROS) and promotion of angiogenesis after full-thickness skin excision in rats. Amines in ATEMPO attaching with carbonyls in HA chains was fabricated through N-acylation. The HA-g-TEMPO exerted a ROS-scavenging and angiogenesis-promoting function in vitro. In acute wound rat model, the wound closure efficacy was significantly improved to almost 55% at day 6 in comparison to 49% of HA, and wound sites in initial wound phase was also narrowed down sharply. Moreover, initially formed blood vessels were found in wound sites, further proved the angiogenesis-promoting function of HA-g-TEMPO. More interestingly, wound sites demonstrated an exciting regenerative healing effect which was characterized by marked skin appendages as well as reduced scarring. Therefore, this strategy showed a promising future that could be considered as a reliable and effective method to cutaneous wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120328DOI Listing

Publication Analysis

Top Keywords

wound sites
12
wound
11
acute wound
8
wound healing
8
reactive oxygen
8
oxygen species
8
species ros
8
wound site
8
blood vessels
8
angiogenesis-promoting function
8

Similar Publications

Challenges and considerations in liposomal hydrogels for the treatment of infection.

Expert Opin Drug Deliv

January 2025

Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.

Introduction: Liposomal hydrogels are novel drug delivery systems that comprise preformed liposomes incorporated in hydrogels destined for mostly localized drug therapy, herewith antimicrobial therapy. The formulation benefits from versatility of liposomes as lipid-based nanocarriers that enable delivery of various antimicrobials of different lipophilicities, and secondary vehicle, hydrogel, that assures better retention time of formulation at the infection site. Especially in an era of alarming antimicrobial resistance, efficient localized antimicrobial therapy that avoids systemic exposure of antimicrobial and related side effects is crucial.

View Article and Find Full Text PDF

With the remarkable advances in diagnostic ultrasound equipment, there is a growing need for ultrasound diagnosis of muscle and soft tissue injuries in sports injuries. Among these, hamstring strains are often difficult to treat and require early and accurate diagnosis. Injuries to the proximal part of the hamstring often take a long time to heal.

View Article and Find Full Text PDF

CMCS-PVA@CA hydrogel dressing: A promoter of wound healing with MRSA virulence attenuation function.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Jilin University, Changchun 130062, PR China. Electronic address:

Traditional wound dressings, primarily centered on antimicrobial or bactericidal strategies, have inadvertently contributed to the rise of drug-resistant bacterial colonies at wound sites, thus prolonging the healing process. In this study, we developed an innovative hydrogel dressing, CMCS-PVA@CA, incorporating carboxymethyl chitosan (CMCS), polyvinyl alcohol (PVA), and cichoric acid (CA), specifically designed to treat skin wounds infected with methicillin-resistant Staphylococcus aureus (MRSA). Computational biology analyses reveal that CA exerts substantial anti-virulence activity by targeting serine/threonine phosphatase (Stp1), achieving an IC of 3.

View Article and Find Full Text PDF

Prevalence, Risk Factors, Causes, Assessments, and Prevention of Medical Adhesive-Related Skin Injury: A Scoping Review.

Adv Skin Wound Care

January 2025

In the Oncology Department of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China, Meichen Du, MD, is Senior Practical Nurse and Mei Liu, MD, is Head Nurse.

Objective: To evaluate research on medical adhesive-related skin injury (MARSI), focusing on its incidence, prevalence, risk factors, causes, assessments, and prevention.

Data Sources: Searches were conducted on Wanfang Data, China National Knowledge Infrastructure, PubMed, Web of Science Core Collection, MEDLINE, EMBASE, and the Cumulative Index of Nursing and Allied Health Literature Plus with Full Text.

Study Selection: Using search terms "medical adhesive related skin injury", "MARSI", "adhesive skin injury", and "medical tape-induced skin injury", the authors selected 43 original articles published between January 1, 2001, and May 12, 2022, in English or Chinese.

View Article and Find Full Text PDF

Hidradenitis Suppurativa: Radical Surgical Excisions with Staged Reconstructions: A Single-Surgeon Retrospective Review of 71 Patients.

Adv Skin Wound Care

January 2025

Abigail C. Judge, BS, is Medical Student, School of Medicine, Yale University, New Haven, Connecticut, United States. Amir H. Tahernia, MD, is Surgeon, Olympia Medical Center and Cedars-Sinai Medical Center, Los Angeles, California.

Background: Hidradenitis suppurativa is a chronic, inflammatory disease involving the pilosebaceous unit of apocrine gland-bearing skin. Wide surgical excision, wherein margins extend beyond active lesions, is considered curative.

Objective: To evaluate the safety and efficacy of wide surgical excision in the treatment of hidradenitis suppurativa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!