Intercellular signaling events mediated by neuropeptides and peptide hormones represent important targets for both basic science and drug discovery. For many bioactive peptides, the protein receptors that transmit information across the receiving cell membrane are not known, severely limiting these signaling pathways as potential therapeutic targets. Identifying the receptor(s) for a given peptide of interest is complicated by several factors. Most notably, cell-cell signaling peptides are generated through dynamic biosynthetic pathways, can act on many different families of receptor proteins, and can participate in complex ligand-receptor interactions that extend beyond a simple one-to-one archetype. Here, we discuss recent methodological advances to identify signaling partners for bioactive peptides. Recent efforts have centered on methods to identify candidate receptors via transcript expression, methods to match peptide-receptor pairs through high throughput screening, and methods to capture direct ligand-receptor interactions using chemical probes. Future applications of the receptor identification approaches discussed here, as well as technical advancements to address their limitations, promise to lead to a greater understanding of how cells communicate to deliver complex physiologies. Importantly, such advancements will likely provide novel targets for the treatment of human diseases within the central nervous and endocrine systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479824 | PMC |
http://dx.doi.org/10.1021/acschembio.0c00950 | DOI Listing |
Am J Physiol Regul Integr Comp Physiol
January 2025
Department of Thoracic Surgery, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region.
We aimed to explore the role of Amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
As an important receptor in a host's immune and metabolic systems, NOD1 is usually activated by Gram-negative bacteria having -diaminopimelic acid (-DAP) in their peptidoglycan (PGN). But some atypical Gram-positive bacteria also contain -DAP in their PGN, giving them the potential to activate NOD1. The prevalence of -DAP-type Gram-positive bacteria in the gut, however, remains largely unknown.
View Article and Find Full Text PDFClin Cancer Res
January 2025
University of Minnesota, Minneapolis, United States.
Purpose: 10-15% of prostate cancers (PCa) harbor recurrent FOXA1 aberrations whereby the alteration type and the effect on the forkhead( FKH) domain impacts protein-function. We developed a FOXA1 classification system to inform clinical management.
Experimental Design: 5,014 PCa were examined using whole exome and transcriptome sequencing from the Caris database.
Pharmacogenet Genomics
February 2025
Department of Anesthesiology, Vanderbilt University Medical Center.
Objectives: We aimed to classify genetic variants in RYR1 and CACNA1S associated with malignant hyperthermia using biobank genotyping data in patients exposed to triggering anesthetics without malignant hyperthermia phenotype.
Methods: We identified individuals who underwent surgery and were exposed to triggering anesthetics without malignant hyperthermia phenotype and who had RYR1 or CACNA1S genotyping data available in our biobank. We classified all variants in the cohort using a Bayesian framework of the American College of Medical Genetics and Genomics and the Association of Molecular Pathologists guidelines for variant classification and updated the posterior probabilities from this model with the new information from our biobank cohort.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!