During developmental angiogenesis, endothelial cells respond to shear stress by migrating and remodelling the initially hyperbranched plexus, removing certain vessels whilst maintaining others. In this study, we argue that the key regulator of vessel preservation is cell decision behaviour at bifurcations. At flow-convergent bifurcations where migration paths diverge, cells must finely tune migration along both possible paths if the bifurcation is to persist. Experiments have demonstrated that disrupting the cells' ability to sense shear or the junction forces transmitted between cells impacts the preservation of bifurcations during the remodelling process. However, how these migratory cues integrate during cell decision making remains poorly understood. Therefore, we present the first agent-based model of endothelial cell flow-mediated migration suitable for interrogating the mechanisms behind bifurcation stability. The model simulates flow in a bifurcated vessel network composed of agents representing endothelial cells arranged into a lumen which migrate against flow. Upon approaching a bifurcation where more than one migration path exists, agents refer to a stochastic bifurcation rule which models the decision cells make as a combination of flow-based and collective-based migratory cues. With this rule, cells favour branches with relatively larger shear stress or cell number. We found that cells must integrate both cues nearly equally to maximise bifurcation stability. In simulations with stable bifurcations, we found competitive oscillations between flow and collective cues, and simulations that lost the bifurcation were unable to maintain these oscillations. The competition between these two cues is haemodynamic in origin, and demonstrates that a natural defence against bifurcation loss during remodelling exists: as vessel lumens narrow due to cell efflux, resistance to flow and shear stress increases, attracting new cells to enter and rescue the vessel from regression. Our work provides theoretical insight into the role of junction force transmission has in stabilising vasculature during remodelling and as an emergent mechanism to avoid functional shunting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909651 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1007715 | DOI Listing |
Medicine (Baltimore)
January 2025
Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.
Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.
View Article and Find Full Text PDFJ Neurosurg
January 2025
1Department of Bioengineering, George Mason University, Fairfax, Virginia.
Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.
Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.
PLoS One
January 2025
School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China.
The shear resistance of filling joints is an important factor affecting the stability of rock joints. Pressure-shear tests of cement-filled joints were carried out. Combined with the acoustic emission (AE) technique, the effects of normal stress, roughness and filling degree on the shear strength, damage morphology and damage evolution of cement-filled joints were investigated.
View Article and Find Full Text PDFPLoS One
January 2025
School of Civil Engineering, Guizhou University, Guiyang, Guizhou, China.
The mechanical properties of jointed rock bodies are important in guiding engineering design and construction. Using the particle flow software PFC2D, we conducted direct shear test simulations on joints with various inclinations and five different roughness levels to examine the models' crack extension penetration paths, damage modes, and strength characteristics. The findings indicate that the direction of the joint influences the pattern of the rock crack and its penetration route.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
School of Mechanical Engineering, University of Jinan, Jinan 250022, China.
This research centers around cast steel 20Mn, which is the material utilized for the ear-picking roller of a corn harvester. The study delves into methods of enhancing its hydrophobicity and wear resistance. Fiber laser-processing technology was employed to fabricate pangolin bionic micro-textures on the material surface, and PVD technology was utilized to deposit a TiN coating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!