Elevation of intraocular pressure (IOP) due to trabecular meshwork (TM) damage is associated with primary open-angle glaucoma (POAG). Myocilin mutations resulting in elevated IOP are the most common genetic causes of POAG. We have previously shown that mutant myocilin accumulates in the ER and induces chronic ER stress, leading to TM damage and IOP elevation. However, it is not understood how chronic ER stress leads to TM dysfunction and loss. Here, we report that mutant myocilin activated autophagy but was functionally impaired in cultured human TM cells and in a mouse model of myocilin-associated POAG (Tg-MYOCY437H). Genetic and pharmacological inhibition of autophagy worsened mutant myocilin accumulation and exacerbated IOP elevation in Tg-MYOCY437H mice. Remarkably, impaired autophagy was associated with chronic ER stress-induced transcriptional factor CHOP. Deletion of CHOP corrected impaired autophagy, enhanced recognition and degradation of mutant myocilin by autophagy, and reduced glaucoma in Tg-MYOCY437H mice. Stimulating autophagic flux via tat-beclin 1 peptide or torin 2 promoted autophagic degradation of mutant myocilin and reduced elevated IOP in Tg-MYOCY437H mice. Our study provides an alternate treatment strategy for myocilin-associated POAG by correcting impaired autophagy in the TM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021112 | PMC |
http://dx.doi.org/10.1172/jci.insight.143359 | DOI Listing |
J Phys Chem B
December 2024
Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India.
In myocilin-associated glaucoma, pathogenic missense mutations accumulate mainly in the olfactomedin domain (mOLF) of myocilin. This makes the protein susceptible to aggregation, where mOLF-mOLF dimerization is possibly an initial stage. Nevertheless, there are no molecular level studies that have probed the nature of interactions occurring between two mOLF domains and the key characteristics of the resulting dimer complex.
View Article and Find Full Text PDFElevation of intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction, leading to neurodegeneration, is the pathological hallmark of primary open-angle glaucoma (POAG). Impaired axonal transport is an early and critical feature of glaucomatous neurodegeneration. However, a robust mouse model that replicates these human POAG features accurately has been lacking.
View Article and Find Full Text PDFHeliyon
September 2024
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
The trabecular meshwork (TM) plays an essential role in the circulation of aqueous humor by sensing mechanical stretch. The balance between the outflow and inflow of aqueous humor is critical in regulating intraocular pressure (IOP). A dysfunctional TM leads to resistance to the outflow of aqueous humor, resulting in an elevated IOP, a major risk factor for glaucoma.
View Article and Find Full Text PDFSci Rep
March 2024
Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA.
Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease.
View Article and Find Full Text PDFExp Eye Res
April 2024
Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China; Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing University of Aeronautics and Astronautics, Capital Medical University, Beijing, 100083, China. Electronic address:
Transgenic C57BL/6 mice expressing human myocilin (Tg-MYOC) are a well-established model for primary open-angle glaucoma (POAG). While the reduced trabecular meshwork (TM) cellularity due to severe endoplasmic reticulum (ER) stress has been characterized as the etiology of this model, there is a limited understanding of how glaucomatous phenotypes evolve over the lifespan of Tg-Myoc mice. In this study, we compiled the model's intraocular pressure (IOP) data recorded in our laboratory from 2017 to 2023 and selected representative eyes to measure the outflow facility (C), a critical parameter indicating the condition of the conventional TM pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!