Chronic cerebral hypoperfusion (CCH) may lead to the cognitive dysfunction, but the underlying mechanisms are unclear. EGB761, extracted from and as a phytomedicine widely used in the world, has been showed to have various neuroprotective roles and mechanisms, and therapeutic effects in Alzheimer's disease and other cognitive dysfunctions. However, improvements in cognitive function after CCH, following treatment with EGB761, have not been ascertained yet. In this study, we used the behavior test, electrophysiology, neurobiochemistry, and immunohistochemistry to investigate the EGB761's effect on CCH-induced cognitive dysfunction and identify its underlying mechanisms. The results showed that EGB761 ameliorates spatial cognitive dysfunction occurring after CCH. It may also improve impairment of the long-term potentiation, field excitable potential, synaptic transmission, and the transmission synchronization of neural circuit signals between the entorhinal cortex and hippocampal CA1. EGB761 may also reverse the inhibition of neural activity and the degeneration of dendritic spines and synaptic structure after CCH; it also prevents the downregulation of synaptic proteins molecules and pathways related to the formation and stability of dendritic spines structures. EGB761 may inhibit axon demyelination and ameliorate the inhibition of the mTOR signaling pathway after CCH to improve protein synthesis. In conclusion, EGB761 treatment after CCH may improve spatial cognitive function by ameliorating synaptic plasticity impairment, synapse degeneration, and axon demyelination by rectifying the inhibition of the mTOR signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064192 | PMC |
http://dx.doi.org/10.18632/aging.202555 | DOI Listing |
Sci Rep
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.
View Article and Find Full Text PDFCell Death Dis
January 2025
Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.
View Article and Find Full Text PDFCortex
December 2024
Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Japan.
The applause sign (AS) is a recognized phenomenon observed in progressive supranuclear palsy (PSP) and other neurological conditions where individuals produce over three claps following a request to clap only thrice after a demonstration. In this study, we introduced a novel linguistic phenomenon termed the oral applause sign (OAS) associated with the AS. The OAS is characterized by increased repetition counts of Japanese repetitive onomatopoeic words, such as uttering "pata-pata-pata" instead of the expected "pata-pata.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Neurology, Joondalup Health Campus, Joondalup, Western Australia, Australia.
Anti-dipeptidyl-peptidase-like protein 6 antibody-mediated disease is a rare autoimmune encephalitis typically presenting with diarrhoea and/or weight loss, central nervous system hyperexcitability and cognitive dysfunction. We present a case of a young woman with 10 days of diplopia and unsteadiness in the context of dysthymia and significant weight loss over 2 months. Initial examination demonstrated mixed dysconjugate nystagmus and ataxic gait.
View Article and Find Full Text PDFGeriatr Nurs
January 2025
School of Nursing, Jilin University, Changchun, Jilin, 130021, China. Electronic address:
Objective: To explore the perspectives and perceptions of persons with mild cognitive impairment (MCI), their caregivers, and healthcare professionals on computerized cognitive training (CCT).
Material And Methods: Utilizing phenomenological research methods, 12 MCI patients, 11 caregivers, and 15 healthcare professionals were recruited. Data were collected through four focus group interviews and six semi-structured in-depth interviews conducted between March 2023 and June 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!