Aims: Endovascular coiling is a common modality for treating intracranial aneurysms; however, recanalization occurs in approximately 1 in 5 cases, with downstream consequences of regrowth and rupture. Aneurysm packing density >24% reduces recanalization risk; packing density can be increased by inserting additional coils or by using coils with larger volumetric filling. Coil volume depends on length and primary wind diameter (PWD). This study evaluated the influence of PWD on packing density and total case costs.

Materials And Methods: Two hypothetical scenarios and one case study were analyzed. In scenario one, the number of coils required to achieve packing density >24% in a hypothetical aneurysm was determined for 0.012″ vs. 0.010″ PWD coils. In scenario two, the total length of 0.010″ vs. 0.012″ PWD coils required to achieve a packing density >24% was analyzed relative to aneurysm volume. In the case study, packing densities with one 0.012″ PWD coil (actual scenario) and one 0.010″ PWD coil (theoretical scenario) were compared.

Results: In scenario one, cost savings would be realized by using four 0.012″ PWD coils vs. seven 0.010″ PWD coils to achieve packing density >24%. In scenario two, greater volumetric filling of 0.012″ vs. 0.010″ PWD coils was correlated with lower total length of coil required. In the case study, a 0.012″ PWD coil achieved packing density >24%, whereas an equivalent length 0.010″ PWD coil would not.

Limitations: Theoretical modeling was used to explore the impact of coil PWD on aneurysm packing density. In clinical practice, packing density depends not only on PWD but on its length, shape, distribution within an aneurysm, and other recanalization risk factors.

Conclusions: Coil PWD influences packing density, the number of coils required to achieve a specific packing density, and total case costs. Using 0.012″ PWD coils may provide cost and procedural efficiencies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13696998.2021.1885194DOI Listing

Publication Analysis

Top Keywords

packing density
48
pwd coils
24
density >24%
20
0010″ pwd
20
0012″ pwd
20
pwd coil
16
pwd
15
packing
13
aneurysm packing
12
density
12

Similar Publications

Foxing of Watercolor Paper and Environmental Control as Preventive Actions.

Chempluschem

December 2024

Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, SINGAPORE.

In Singapore's hot and humid climate, watercolor papers are particularly prone to a paper oxidation issue known as foxing, which refers to the discoloration forming yellowish-brown stains on paper, changing the visual outcome of the watercolor artworks. This research investigates two most popular types of watercolor paper, made from 100% cotton and cotton-wood-pulp mixture. Foxing was generally categorized into two types: biotic and abiotic foxing caused by fungi activities and the presence of metallic contaminants catalytic fungi growth.

View Article and Find Full Text PDF

Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.

View Article and Find Full Text PDF

Hydrogen hydrates exhibit a rich phase diagram influenced by both pressure and temperature, with the so-called C_{2} phase emerging prominently above 2.5 GPa. In this phase, hydrogen molecules are densely packed within a cubic icelike lattice and the interaction with the surrounding water molecules profoundly affects their quantum rotational dynamics.

View Article and Find Full Text PDF

Breaking Performance Barriers in KBe2BO3F2 (KBBF) Analogs by Functional Group Self-Polymerization.

Angew Chem Int Ed Engl

December 2024

Sichuan University, Department of Chemistry, wangjiang road NO.64, 610065, Chengdu, CHINA.

Enhancing the conversion efficiency of all-solid-state lasers through the rational design of crystal materials with superior linear and nonlinear optical (NLO) properties remains a formidable challenge. Herein, we present a novel approach to optimizing these properties in KBe2BO3F2 (KBBF)-analog crystals via functional group self-polymerization. This strategy led to the synthesis of two new optical crystals: noncentrosymmetric CsAs2O3Br and centrosymmetric CsAs4O6Br.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!