Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous generators with its ability to enrich parahydrogen to >98.5% and a production rate of up to 4 standard liters per minute with the added advantage of real-time quantification. Our generator employs a pulsed injection system with a 3/16 in. outside diameter copper spiral tubing filled with iron-oxide catalyst. This tubing is mated to a custom-made copper attachment to provide efficient thermal coupling to the cold head. This device allows for robust operation at high pressures up to 34 atm. Real-time quantification by benchtop NMR spectroscopy is made possible by direct coupling of the -H outlet from the generator to a 1.4 T NMR spectrometer using a regular 5 mm NMR tube that is continuously refilled with the exiting parahydrogen gas at ∼8 atm pressure. The use of high hydrogen gas pressure offers two critical NMR signal detection benefits: increased concentration and line narrowing. Our work presents a comprehensive description of the apparatus for a convenient and robust parahydrogen production, distribution, and quantification system, especially for parahydrogen-based hyperpolarization NMR research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011325 | PMC |
http://dx.doi.org/10.1021/acs.analchem.0c05129 | DOI Listing |
Metabolites
December 2024
Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA.
The introduction of benchtop NMR instruments has made NMR spectroscopy a more accessible, affordable option for research and industry, but the lower spectral resolution and SNR of a signal acquired on low magnetic field spectrometers may complicate the quantitative analysis of spectra. In this work, we compare the performance of multiple neural network architectures in the task of converting simulated 100 MHz NMR spectra to 400 MHz with the goal of improving the quality of the low-field spectra for analyte quantification. Multi-layered perceptron networks are also used to directly quantify metabolites in simulated 100 and 400 MHz spectra for comparison.
View Article and Find Full Text PDFChemosphere
December 2024
National Institute of Aquatic Resources, Section for Oceans and Arctic, Technical University of Denmark, Henrik Dams Allé, Building 201, 2800 Kgs. Lyngby, Denmark. Electronic address:
Knowledge of contaminant distribution and transport of contaminant plumes in groundwater is important for effective remediation. Tedious and expensive laboratory analyses could be supplemented with optical measurements such as fluorescence to offer a rapid alternative with the potential for on-site measurements. Here, we explore the applicability of fluorescence spectroscopy as an on-site alternative to identifying the extent of a groundwater contaminant plume in Grindsted, Denmark.
View Article and Find Full Text PDFAppl Spectrosc
December 2024
Sheffield Dermatology Research, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK.
Attenuated total reflection (ATR) Fourier transform infrared spectroscopy (FT-IR) is used to characterize a vast array of materials at the molecular level in various industry types. Here we compare the performance of a portable spectrometer with a novel three-bounce-two-pass (3B2P) ATR scanning interface to the same device with a standard one-bounce (1B) ATR, and to a benchtop spectrometer with a 10-bounce (10B) ATR, in ideal sample-interface conditions and an applied dermatological study setting. In both application settings, the benchtop 10B ATR interface showed the highest signal-to-noise ratio (SNR), however, the novel 3B2P produced a six-fold increase in the sensitivity of the portable spectrometer when analyzing isopropanol and showed the greatest consistency of SNR of all devices when analyzing isopropanol and in vivo skin samples.
View Article and Find Full Text PDFFood Res Int
December 2024
Laboratory of Biophysics, Wageningen University and Research, Wageningen, The Netherlands. Electronic address:
High-moisture (HM) extrusion is the dominant industrial process to create structured plant-based protein products that can be used for animal-free meat alternatives. Yet, the underlying mechanisms, such as phase separation, that govern structure formation in plant-protein extrudates, are still poorly understood. Current hypotheses require experimental data in order to be verified, but measurement techniques able to quantify phase-separated anisotropic protein extrudates are lacking, or have yet to be validated.
View Article and Find Full Text PDFMagn Reson Chem
January 2025
Biomedical Physics Unit, Research Institute for Materials Science and Engineering, UMONS, Mons, Belgium.
The removal of heavy metal ions from wastewater often necessitates the use of ion exchange resins. Current methods for assessing ion exchange efficiency are indirect and destructive. Some heavy metal ions, such as Cu and Ni, are paramagnetic and influence the NMR relaxation times of water protons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!