Type 2 diabetes (T2D) is a worldwide serious public health problem. Insulin resistance and β-cell failure are the two major components of T2D pathology. In addition to defective endoplasmic reticulum (ER) stress signaling due to glucolipotoxicity, β-cell dysfunction or β-cell death initiates the deleterious vicious cycle observed in T2D. Although the primary cause is still unknown, overnutrition that contributes to the induction of the state of low-grade inflammation, and the activation of various protein kinases-related metabolic pathways are main factors leading to T2D. In this chapter following subjects, which have critical checkpoints regarding β-cell fate and protein kinases pathways are discussed; hyperglycemia-induced β-cell failure, chronic accumulation of unfolded protein in β-cells, the effect of intracellular reactive oxygen species (ROS) signaling to insulin secretion, excessive saturated free fatty acid-induced β-cell apoptosis, mitophagy dysfunction, proinflammatory responses and insulin resistance, and the reprogramming of β-cell for differentiation or dedifferentiation in T2D. There is much debate about selecting proposed therapeutic strategies to maintain or enhance optimal β-cell viability for adequate insulin secretion in T2D. However, in order to achieve an effective solution in the treatment of T2D, more intensive clinical trials are required on newer therapeutic options based on protein kinases signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-030-49844-3_8 | DOI Listing |
Background: DYRK1A overexpression, common in neurodegenerative diseases like Alzheimer's (AD), contributes to neurofibrillary tangles via Tau protein hyperphosphorylation and amyloid plaque formation, key AD hallmarks. Therefore, DYRK1A has been regarded as a novel target for neurodegenerative diseases. However, developing DYRK1A selective inhibitors has been a difficult challenge due to the highly conserved ATP-binding site of protein kinases, particularly among the CMGC family.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: SHIP1 is a phosphatidyl inositol phosphatase encoded by INPP5D, which has been identified as a risk gene for Alzheimer's disease (AD). SHIP1 is expressed in microglia, the resident macrophage in brain. It is a complex, multidomain protein that acts as a negative regulator downstream from TREM2.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutcihe (STEBICEF) Università di Palermo, Via Archirafi 32, 90123 Palermo.
CDK2 plays a pivotal role in controlling the cell cycle progression in eukaryotes and for this reason, it has been the subject of several studies for suitable inhibitors in the last decades. But more than 30 years of basic research have not generated an inhibitor as marketed drugs. Some inhibitors are to date in early phase clinical development.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
Doublecortin-like kinase 1 (DCLK1) has been revealed to be involved in modulating cancer stemness and tumor progression, but its role in prostate cancer (PCa) remains obscure. Castration-resistant and metastatic PCa exhibit aggressive behaviors, and current therapeutic approaches have shown limited beneficial effects on the overall survival rate of patients with advanced PCa. This study aimed to investigate the biological role and potential molecular mechanism of DCLK1 in the progression of PCa.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
Clear cell renal cell carcinoma (ccRCC) is one of the most common and aggressive malignancies of the urinary system. Despite being the first-line treatment for advanced ccRCC, vascular endothelial growth factor receptor inhibitors (VEGFRis) face significant limitations due to both initial and acquired resistance, which impede complete tumor eradication. Using a CRISPR/Cas9 library screening approach, was identified as a resistance-associated gene for three prevalent VEGFRis (Sunitinib, Axitinib, and Sorafenib).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!