Magnetocrystalline anisotropy, a key ingredient for establishing long-range order in a magnetic material down to the two-dimensional (2D) limit, is generally associated with spin-orbit interaction (SOI) involving a finite orbital angular momentum. Here we report strong out-of-plane magnetic anisotropy without orbital angular momentum, emerging at the interface between two different van der Waals (vdW) materials, an archetypal metallic vdW material NbSe possessing Zeeman-type SOI and an isotropic vdW ferromagnet VSe. We found that the Zeeman SOI in NbSe induces robust out-of-plane magnetic anisotropy in VSe down to the 2D limit with a more than 2-fold enhancement of the transition temperature. We propose a simple model that takes into account the energy gain in NbSe in contact with a ferromagnet, which naturally explains our observations. Our results demonstrate a conceptually new magnetic proximity effect at the vdW interface, expanding the horizons of emergent phenomena achievable in vdW heterostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.0c04851 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!