Structural and Biochemical Insights into the Inhibition of Human Acetylcholinesterase by G-Series Nerve Agents and Subsequent Reactivation by HI-6.

Chem Res Toxicol

United States Army Futures Command, Combat Capabilities Development Command, Chemical Biological Center, Chemcial Sciences Division, Agent Chemistry Branch, Aberdeen Proving Ground, Aberdeen, Maryland 21010-5424, United States.

Published: March 2021

The recent use of organophosphate nerve agents in Syria, Malaysia, Russia, and the United Kingdom has reinforced the potential threat of their intentional release. These agents act through their ability to inhibit human acetylcholinesterase (hAChE; E.C. 3.1.1.7), an enzyme vital for survival. The toxicity of hAChE inhibition via G-series nerve agents has been demonstrated to vary widely depending on the G-agent used. To gain insight into this issue, the structures of hAChE inhibited by tabun, sarin, cyclosarin, soman, and GP were obtained along with the inhibition kinetics for these agents. Through this information, the role of hAChE active site plasticity in agent selectivity is revealed. With reports indicating that the efficacy of reactivators can vary based on the nerve agent inhibiting hAChE, human recombinatorially expressed hAChE was utilized to define these variations for HI-6 among various G-agents. To identify the structural underpinnings of this phenomenon, the structures of tabun, sarin, and soman-inhibited hAChE in complex with HI-6 were determined. This revealed how the presence of G-agent adducts impacts reactivator access and placement within the active site. These insights will contribute toward a path of next-generation reactivators and an improved understanding of the innate issues with the current reactivators.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrestox.0c00406DOI Listing

Publication Analysis

Top Keywords

nerve agents
12
human acetylcholinesterase
8
g-series nerve
8
tabun sarin
8
active site
8
hache
7
agents
5
structural biochemical
4
biochemical insights
4
insights inhibition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!